
libpng.txt - A description on how to use and
modify libpng

Glenn Randers-Pehrson
libpng maintainer

PNG Development Group

libpng version 1.4.0 - January 3, 2010

Updated and distributed by Glenn Randers-Pehrson
<glennrp at users.sourceforge.net>

Copyright (c) 1998-2009 Glenn Randers-Pehrson

February 1, 2010

This document is released under the libpng license. For conditions of distribution
and use, see the disclaimer and license in png.h

Based on:
libpng versions 0.97, January 1998, through 1.4.0 - January 3, 2010 Updated and

distributed by Glenn Randers-Pehrson Copyright (c) 1998-2009 Glenn Randers-Pehrson
libpng 1.0 beta 6 version 0.96 May 28, 1997 Updated and distributed by Andreas

Dilger Copyright (c) 1996, 1997 Andreas Dilger
libpng 1.0 beta 2 - version 0.88 January 26, 1996 For conditions of distribution and

use, see copyright notice in png.h. Copyright (c) 1995, 1996 Guy Eric Schalnat, Group
42, Inc.

Updated/rewritten per request in the libpng FAQ Copyright (c) 1995, 1996 Frank J.
T. Wojcik December 18, 1995 & January 20, 1996

1

Contents

1 I. Introduction 4

2 II. Structures 6

3 III. Reading 7
3.1 Setup . 7
3.2 Input transformations . 18
3.3 Reading image data . 24
3.4 Finishing a sequential read . 26
3.5 Reading PNG files progressively . 27

4 IV. Writing 31
4.1 Setup . 31
4.2 Write callbacks . 32
4.3 Setting the contents of info for output 34
4.4 Writing unknown chunks . 38
4.5 The high-level write interface . 39
4.6 The low-level write interface . 39
4.7 Writing the image data . 42
4.8 Finishing a sequential write . 43

5 V. Modifying/Customizing libpng: 45
5.1 Memory allocation, input/output, and error handling 45
5.2 Custom chunks . 47
5.3 Configuring for 16 bit platforms . 47
5.4 Configuring for DOS . 48
5.5 Configuring for Medium Model . 48
5.6 Configuring for gui/windowing platforms: 48
5.7 Configuring for compiler xxx: . 48
5.8 Configuring zlib: . 48
5.9 Controlling row filtering . 49
5.10 Removing unwanted object code . 50
5.11 Requesting debug printout . 51

6 VI. MNG support 52

7 VII. Changes to Libpng from version 0.88 53

8 VIII. Changes to Libpng from version 1.0.x to 1.2.x 55

2

9 IX. Changes to Libpng from version 1.0.x/1.2.x to 1.4.x 57

10 X. Detecting libpng 59

11 XI. Source code repository 60

12 XII. Coding style 61

13 XIII. Y2K Compliance in libpng 63

3

Chapter 1

I. Introduction

This file describes how to use and modify the PNG reference library (known as libpng)
for your own use. There are five sections to this file: introduction, structures, reading,
writing, and modification and configuration notes for various special platforms. In
addition to this file, example.c is a good starting point for using the library, as it is
heavily commented and should include everything most people will need. We assume
that libpng is already installed; see the INSTALL file for instructions on how to install
libpng.

For examples of libpng usage, see the files ”example.c”, ”pngtest.c”, and the files
in the ”contrib” directory, all of which are included in the libpng distribution.

Libpng was written as a companion to the PNG specification, as a way of reducing
the amount of time and effort it takes to support the PNG file format in application
programs.

The PNG specification (second edition), November 2003, is available as a W3C
Recommendation and as an ISO Standard (ISO/IEC 15948:2003 (E)) at
<http://www.w3.org/TR/2003/REC-PNG-20031110/>The W3C and ISO documents
have identical technical content.

The PNG-1.2 specification is available at <http://www.libpng.org/pub/png/documents/>.
It is technically equivalent to the PNG specification (second edition) but has some ad-
ditional material.

The PNG-1.0 specification is available as RFC 2083 <http://www.libpng.org/pub/png/documents/>and
as a W3C Recommendation <http://www.w3.org/TR/REC.png.html>.

Some additional chunks are described in the special-purpose public chunks docu-
ments at <http://www.libpng.org/pub/png/documents/>.

Other information about PNG, and the latest version of libpng, can be found at the
PNG home page, <http://www.libpng.org/pub/png/>.

Most users will not have to modify the library significantly; advanced users may
want to modify it more. All attempts were made to make it as complete as possible,
while keeping the code easy to understand. Currently, this library only supports C.
Support for other languages is being considered.

Libpng has been designed to handle multiple sessions at one time, to be easily
modifiable, to be portable to the vast majority of machines (ANSI, K&R, 16-, 32-, and
64-bit) available, and to be easy to use. The ultimate goal of libpng is to promote the
acceptance of the PNG file format in whatever way possible. While there is still work
to be done (see the TODO file), libpng should cover the majority of the needs of its
users.

4

Libpng uses zlib for its compression and decompression of PNG files. Further
information about zlib, and the latest version of zlib, can be found at the zlib home
page, <http://www.info-zip.org/pub/infozip/zlib/>. The zlib compression utility is a
general purpose utility that is useful for more than PNG files, and can be used without
libpng. See the documentation delivered with zlib for more details. You can usually
find the source files for the zlib utility wherever you find the libpng source files.

Libpng is thread safe, provided the threads are using different instances of the struc-
tures. Each thread should have its own png_struct and png_info instances, and
thus its own image. Libpng does not protect itself against two threads using the same
instance of a structure.

5

Chapter 2

II. Structures

There are two main structures that are important to libpng, png_struct and png_info
. The first, png_struct, is an internal structure that will not, for the most part, be
used by a user except as the first variable passed to every libpng function call.

The png_info structure is designed to provide information about the PNG file. At
one time, the fields of png_info were intended to be directly accessible to the user.
However, this tended to cause problems with applications using dynamically loaded
libraries, and as a result a set of interface functions for png_info (the png_get_
() and png_set_() functions) was developed. The fields of png_info are
still available for older applications, but it is suggested that applications use the new
interfaces if at all possible.

Applications that do make direct access to the members of png_struct (except
for png_ptr->jmpbuf) must be recompiled whenever the library is updated, and
applications that make direct access to the members of png_infomust be recompiled
if they were compiled or loaded with libpng version 1.0.6, in which the members were
in a different order. In version 1.0.7, the members of the png_info structure reverted
to the old order, as they were in versions 0.97c through 1.0.5. Starting with version
2.0.0, both structures are going to be hidden, and the contents of the structures will
only be accessible through the png_get/png_set functions.

The png.h header file is an invaluable reference for programming with libpng. And
while I’m on the topic, make sure you include the libpng header file:

#include <png.h>

6

Chapter 3

III. Reading

We’ll now walk you through the possible functions to call when reading in a PNG file
sequentially, briefly explaining the syntax and purpose of each one. See example.c and
png.h for more detail. While progressive reading is covered in the next section, you
will still need some of the functions discussed in this section to read a PNG file.

3.1 Setup
You will want to do the I/O initialization(*) before you get into libpng, so if it doesn’t
work, you don’t have much to undo. Of course, you will also want to insure that
you are, in fact, dealing with a PNG file. Libpng provides a simple check to see if a
file is a PNG file. To use it, pass in the first 1 to 8 bytes of the file to the function
png_sig_cmp(), and it will return 0 (false) if the bytes match the corresponding
bytes of the PNG signature, or nonzero (true) otherwise. Of course, the more bytes you
pass in, the greater the accuracy of the prediction.

If you are intending to keep the file pointer open for use in libpng, you must ensure
you don’t read more than 8 bytes from the beginning of the file, and you also have to
make a call to png_set_sig_bytes_read() with the number of bytes you read
from the beginning. Libpng will then only check the bytes (if any) that your program
didn’t read.

(*): If you are not using the standard I/O functions, you will need to replace them
with custom functions. See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "rb");
if (!fp)
{

return (ERROR);
}
fread(header, 1, number, fp);
is_png = !png_sig_cmp(header, 0, number);
if (!is_png)
{

return (NOT_PNG);
}

Next, png_struct and png_info need to be allocated and initialized. In or-
der to ensure that the size of these structures is correct even with a dynamically linked
libpng, there are functions to initialize and allocate the structures. We also pass the

7

library version, optional pointers to error handling functions, and a pointer to a data
struct for use by the error functions, if necessary (the pointer and functions can be
NULL if the default error handlers are to be used). See the section on Changes to
Libpng below regarding the old initialization functions. The structure allocation func-
tions quietly return NULL if they fail to create the structure, so your application should
check for that.

png_structp png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{

png_destroy_read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);

return (ERROR);
}

png_infop end_info = png_create_info_struct(png_ptr);
if (!end_info)
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

If you want to use your own memory allocation routines, define PNG_USER_MEM_SUPPORTED
and use png_create_read_struct_2() instead of png_create_read_struct
():

png_structp png_ptr = png_create_read_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);

The error handling routines passed to png_create_read_struct() and the
memory alloc/free routines passed to png_create_struct_2() are only neces-
sary if you are not using the libpng supplied error handling and memory alloc/free
functions.

When libpng encounters an error, it expects to longjmp back to your routine. There-
fore, you will need to call setjmp and pass your png_jmpbuf(png_ptr). If you
read the file from different routines, you will need to update the jmpbuf field every time
you enter a new routine that will call a png_*() function.

See your documentation of setjmp/longjmp for your compiler for more informa-
tion on setjmp/longjmp. See the discussion on libpng error handling in the Cus-
tomizing Libpng section below for more information on the libpng error handling.
If an error occurs, and libpng longjmp’s back to your setjmp, you will want to call
png_destroy_read_struct() to free any memory.

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);

fclose(fp);
return (ERROR);

8

}

If you would rather avoid the complexity of setjmp/longjmp issues, you can com-
pile libpng with PNG_SETJMP_NOT_SUPPORTED, in which case errors will result
in a call to PNG_ABORT() which defaults to abort().

Now you need to set up the input code. The default for libpng is to use the C
function fread(). If you use this, you will need to pass a valid FILE * in the function
png_init_io(). Be sure that the file is opened in binary mode. If you wish to
handle reading data in another way, you need not call the png_init_io() function,
but you must then implement the libpng I/O methods discussed in the Customizing
Libpng section below.

png_init_io(png_ptr, fp);

If you had previously opened the file and read any of the signature from the begin-
ning in order to see if this was a PNG file, you need to let libpng know that there are
some bytes missing from the start of the file.

png_set_sig_bytes(png_ptr, number);

Setting up callback code
You can set up a callback function to handle any unknown chunks in the input

stream. You must supply the function

read_chunk_callback(png_ptr ptr,
png_unknown_chunkp chunk);

{
/* The unknown chunk structure contains your

chunk data, along with similar data for any other
unknown chunks: */

png_byte name[5];
png_byte *data;
png_size_t size;

/* Note that libpng has already taken care of
the CRC handling */

/* put your code here. Search for your chunk in the
unknown chunk structure, process it, and return one
of the following: */

return (-n); /* chunk had an error */
return (0); /* did not recognize */
return (n); /* success */

}

(You can give your function another name that you like instead of ”read_chunk_callback
”)

To inform libpng about your function, use

png_set_read_user_chunk_fn(png_ptr, user_chunk_ptr,
read_chunk_callback);

This names not only the callback function, but also a user pointer that you can
retrieve with

png_get_user_chunk_ptr(png_ptr);

9

If you call the png_set_read_user_chunk_fn() function, then all unknown
chunks will be saved when read, in case your callback function will need one or more of
them. This behavior can be changed with the png_set_keep_unknown_chunks
() function, described below.

At this point, you can set up a callback function that will be called after each row
has been read, which you can use to control a progress meter or the like. It’s demon-
strated in pngtest.c. You must supply a function

void read_row_callback(png_ptr ptr, png_uint_32 row,
int pass);

{
/* put your code here */

}

(You can give it another name that you like instead of ”read_row_callback”)
To inform libpng about your function, use

png_set_read_status_fn(png_ptr, read_row_callback);

Unknown-chunk handling
Now you get to set the way the library processes unknown chunks in the input

PNG stream. Both known and unknown chunks will be read. Normal behavior is that
known chunks will be parsed into information in various info_ptr members while
unknown chunks will be discarded. This behavior can be wasteful if your application
will never use some known chunk types. To change this, you can call:

png_set_keep_unknown_chunks(png_ptr, keep,
chunk_list, num_chunks);

keep - 0: default unknown chunk handling
1: ignore; do not keep
2: keep only if safe-to-copy
3: keep even if unsafe-to-copy

You can use these definitions:
PNG_HANDLE_CHUNK_AS_DEFAULT 0
PNG_HANDLE_CHUNK_NEVER 1
PNG_HANDLE_CHUNK_IF_SAFE 2
PNG_HANDLE_CHUNK_ALWAYS 3

chunk_list - list of chunks affected (a byte string,
five bytes per chunk, NULL or ’\0’ if
num_chunks is 0)

num_chunks - number of chunks affected; if 0, all
unknown chunks are affected. If nonzero,
only the chunks in the list are affected

Unknown chunks declared in this way will be saved as raw data onto a list of
png_unknown_chunk structures. If a chunk that is normally known to libpng is
named in the list, it will be handled as unknown, according to the ”keep” directive. If a
chunk is named in successive instances of png_set_keep_unknown_chunks(),
the final instance will take precedence. The IHDR and IEND chunks should not be
named in chunk_list; if they are, libpng will process them normally anyway.

Here is an example of the usage of png_set_keep_unknown_chunks(),
where the private ”vpAg” chunk will later be processed by a user chunk callback func-
tion:

png_byte vpAg[5]={118, 112, 65, 103, (png_byte) ’\0’};

#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
png_byte unused_chunks[]=

10

{
104, 73, 83, 84, (png_byte) ’\0’, /* hIST */
105, 84, 88, 116, (png_byte) ’\0’, /* iTXt */
112, 67, 65, 76, (png_byte) ’\0’, /* pCAL */
115, 67, 65, 76, (png_byte) ’\0’, /* sCAL */
115, 80, 76, 84, (png_byte) ’\0’, /* sPLT */
116, 73, 77, 69, (png_byte) ’\0’, /* tIME */

};
#endif

...

#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
/* ignore all unknown chunks: */
png_set_keep_unknown_chunks(read_ptr, 1, NULL, 0);
/* except for vpAg: */
png_set_keep_unknown_chunks(read_ptr, 2, vpAg, 1);
/* also ignore unused known chunks: */
png_set_keep_unknown_chunks(read_ptr, 1, unused_chunks,

(int)sizeof(unused_chunks)/5);
#endif

User limits
The PNG specification allows the width and height of an image to be as large as

2ˆ31-1 (0x7fffffff), or about 2.147 billion rows and columns. Since very few
applications really need to process such large images, we have imposed an arbitrary
1-million limit on rows and columns. Larger images will be rejected immediately with
a png_error() call. If you wish to override this limit, you can use

png_set_user_limits(png_ptr, width_max, height_max);

to set your own limits, or use width_max = height_max = 0x7fffffffL
to allow all valid dimensions (libpng may reject some very large images anyway be-

cause of potential buffer overflow conditions).
You should put this statement after you create the PNG structure and before call-

ing png_read_info(), png_read_png(), or png_process_data(). If you
need to retrieve the limits that are being applied, use

width_max = png_get_user_width_max(png_ptr);
height_max = png_get_user_height_max(png_ptr);

The PNG specification sets no limit on the number of ancillary chunks allowed in
a PNG datastream. You can impose a limit on the total number of sPLT, tEXt, iTXt,
zTXt, and unknown chunks that will be stored, with

png_set_chunk_cache_max(png_ptr, user_chunk_cache_max);

where 0x7fffffffL means unlimited. You can retrieve this limit with

chunk_cache_max = png_get_chunk_cache_max(png_ptr);

This limit also applies to the number of buffers that can be allocated by png_decompress_chunk
() while decompressing iTXt, zTXt, and iCCP chunks.

The high-level read interface
At this point there are two ways to proceed; through the high-level read interface,

or through a sequence of low-level read operations. You can use the high-level in-
terface if (a) you are willing to read the entire image into memory, and (b) the input
transformations you want to do are limited to the following set:

11

PNG_TRANSFORM_IDENTITY No transformation
PNG_TRANSFORM_STRIP_16 Strip 16-bit samples to

8 bits
PNG_TRANSFORM_STRIP_ALPHA Discard the alpha channel
PNG_TRANSFORM_PACKING Expand 1, 2 and 4-bit

samples to bytes
PNG_TRANSFORM_PACKSWAP Change order of packed

pixels to LSB first
PNG_TRANSFORM_EXPAND Perform set_expand()
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixels to the

sBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA

to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA

to AG
PNG_TRANSFORM_INVERT_ALPHA Change alpha from opacity

to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_GRAY_TO_RGB Expand grayscale samples

to RGB (or GA to RGBA)

(This excludes setting a background color, doing gamma transformation, dithering,
and setting filler.) If this is the case, simply do this:

png_read_png(png_ptr, info_ptr, png_transforms, NULL)

where png_transforms is an integer containing the bitwise OR of some set of
transformation flags. This call is equivalent to png_read_info(), followed the set
of transformations indicated by the transform mask, then png_read_image(), and
finally png_read_end().

(The final parameter of this call is not yet used. Someday it might point to trans-
formation parameters required by some future input transform.)

You must use png_transforms and not call any png_set_transform()
functions when you use png_read_png().

After you have called png_read_png(), you can retrieve the image data with

row_pointers = png_get_rows(png_ptr, info_ptr);

where row_pointers is an array of pointers to the pixel data for each row:

png_bytep row_pointers[height];

If you know your image size and pixel size ahead of time, you can allocate row_pointers
prior to calling png_read_png() with

if (height > PNG_UINT_32_MAX/png_sizeof(png_byte))
png_error (png_ptr,

"Image is too tall to process in memory");
if (width > PNG_UINT_32_MAX/pixel_size)

png_error (png_ptr,
"Image is too wide to process in memory");

row_pointers = png_malloc(png_ptr,
height*png_sizeof(png_bytep));

for (int i=0; i<height, i++)
row_pointers[i]=NULL; /* security precaution */

for (int i=0; i<height, i++)
row_pointers[i]=png_malloc(png_ptr,

width*pixel_size);
png_set_rows(png_ptr, info_ptr, &row_pointers);

12

Alternatively you could allocate your image in one big block and define row_pointers
[i] to point into the proper places in your block.

If you use png_set_rows(), the application is responsible for freeing row_pointers
(and row_pointers[i], if they were separately allocated).

If you don’t allocate row_pointers ahead of time, png_read_png() will do
it, and it’ll be free’ed when you call png_destroy_*().

The low-level read interface
If you are going the low-level route, you are now ready to read all the file informa-

tion up to the actual image data. You do this with a call to png_read_info().

png_read_info(png_ptr, info_ptr);

This will process all chunks up to but not including the image data.
Querying the info structure
Functions are used to get the information from the info_ptr once it has been

read. Note that these fields may not be completely filled in until png_read_end()
has read the chunk data following the image.

png_get_IHDR(png_ptr, info_ptr, &width, &height,
&bit_depth, &color_type, &interlace_type,
&compression_type, &filter_method);

width - holds the width of the image
in pixels (up to 2ˆ31).

height - holds the height of the image
in pixels (up to 2ˆ31).

bit_depth - holds the bit depth of one of the
image channels. (valid values are
1, 2, 4, 8, 16 and depend also on
the color_type. See also
significant bits (sBIT) below).

color_type - describes which color/alpha channels
are present.

PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)

PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)

PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)

PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)

PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

filter_method - (must be PNG_FILTER_TYPE_BASE
for PNG 1.0, and can also be
PNG_INTRAPIXEL_DIFFERENCING if
the PNG datastream is embedded in
a MNG-1.0 datastream)

compression_type - (must be PNG_COMPRESSION_TYPE_BASE
for PNG 1.0)

interlace_type - (PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7)

Any or all of interlace_type, compression_type, or
filter_method can be NULL if you are

13

not interested in their values.

Note that png_get_IHDR() returns 32-bit data into
the application’s width and height variables.
This is an unsafe situation if these are 16-bit
variables. In such situations, the
png_get_image_width() and png_get_image_height()
functions described below are safer.

width = png_get_image_width(png_ptr,
info_ptr);

height = png_get_image_height(png_ptr,
info_ptr);

bit_depth = png_get_bit_depth(png_ptr,
info_ptr);

color_type = png_get_color_type(png_ptr,
info_ptr);

filter_method = png_get_filter_type(png_ptr,
info_ptr);

compression_type = png_get_compression_type(png_ptr,
info_ptr);

interlace_type = png_get_interlace_type(png_ptr,
info_ptr);

channels = png_get_channels(png_ptr, info_ptr);
channels - number of channels of info for the

color type (valid values are 1 (GRAY,
PALETTE), 2 (GRAY_ALPHA), 3 (RGB),
4 (RGB_ALPHA or RGB + filler byte))

rowbytes = png_get_rowbytes(png_ptr, info_ptr);
rowbytes - number of bytes needed to hold a row

signature = png_get_signature(png_ptr, info_ptr);
signature - holds the signature read from the

file (if any). The data is kept in
the same offset it would be if the
whole signature were read (i.e. if an
application had already read in 4
bytes of signature before starting
libpng, the remaining 4 bytes would
be in signature[4] through signature[7]
(see png_set_sig_bytes())).

These are also important, but their validity depends on whether the chunk has been
read. The png_get_valid(png_ptr, info_ptr, PNG_INFO_<chunk>)
and png_get_<chunk>(png_ptr, info_ptr, ...) functions return non-

zero if the data has been read, or zero if it is missing. The parameters to the png_get_
<chunk> are set directly if they are simple data types, or a pointer into the info_ptr
is returned for any complex types.

png_get_PLTE(png_ptr, info_ptr, &palette,
&num_palette);

palette - the palette for the file
(array of png_color)

num_palette - number of entries in the palette

png_get_gAMA(png_ptr, info_ptr, &gamma);
gamma - the gamma the file is written

at (PNG_INFO_gAMA)

png_get_sRGB(png_ptr, info_ptr, &srgb_intent);
srgb_intent - the rendering intent (PNG_INFO_sRGB)

14

The presence of the sRGB chunk
means that the pixel data is in the
sRGB color space. This chunk also
implies specific values of gAMA and
cHRM.

png_get_iCCP(png_ptr, info_ptr, &name,
&compression_type, &profile, &proflen);

name - The profile name.
compression - The compression type; always

PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.

profile - International Color Consortium color
profile data. May contain NULs.

proflen - length of profile data in bytes.

png_get_sBIT(png_ptr, info_ptr, &sig_bit);
sig_bit - the number of significant bits for

(PNG_INFO_sBIT) each of the gray,
red, green, and blue channels,
whichever are appropriate for the
given color type (png_color_16)

png_get_tRNS(png_ptr, info_ptr, &trans_alpha,
&num_trans, &trans_color);

trans_alpha - array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)

trans_color - graylevel or color sample values of
the single transparent color for
non-paletted images (PNG_INFO_tRNS)

num_trans - number of transparent entries
(PNG_INFO_tRNS)

png_get_hIST(png_ptr, info_ptr, &hist);
(PNG_INFO_hIST)

hist - histogram of palette (array of
png_uint_16)

png_get_tIME(png_ptr, info_ptr, &mod_time);
mod_time - time image was last modified

(PNG_VALID_tIME)

png_get_bKGD(png_ptr, info_ptr, &background);
background - background color (PNG_VALID_bKGD)

valid 16-bit red, green and blue
values, regardless of color_type

num_comments = png_get_text(png_ptr, info_ptr,
&text_ptr, &num_text);

num_comments - number of comments
text_ptr - array of png_text holding image

comments
text_ptr[i].compression - type of compression used

on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[i].key - keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Can be empty.

15

text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt

text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt

text_ptr[i].lang - language of comment (empty
string for unknown).

text_ptr[i].lang_key - keyword in UTF-8
(empty string for unknown).

Note that the itxt_length, lang, and lang_key
members of the text_ptr structure only exist
when the library is built with iTXt chunk support.

num_text - number of comments (same as
num_comments; you can put NULL here
to avoid the duplication)

Note while png_set_text() will accept text, language,
and translated keywords that can be NULL pointers, the
structure returned by png_get_text will always contain
regular zero-terminated C strings. They might be
empty strings but they will never be NULL pointers.

num_spalettes = png_get_sPLT(png_ptr, info_ptr,
&palette_ptr);

palette_ptr - array of palette structures holding
contents of one or more sPLT chunks
read.

num_spalettes - number of sPLT chunks read.

png_get_oFFs(png_ptr, info_ptr, &offset_x, &offset_y,
&unit_type);

offset_x - positive offset from the left edge
of the screen

offset_y - positive offset from the top edge
of the screen

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_get_pHYs(png_ptr, info_ptr, &res_x, &res_y,
&unit_type);

res_x - pixels/unit physical resolution in
x direction

res_y - pixels/unit physical resolution in
x direction

unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_get_sCAL(png_ptr, info_ptr, &unit, &width,
&height)

unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are doubles)

png_get_sCAL_s(png_ptr, info_ptr, &unit, &width,
&height)

unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are strings like "2.54")

num_unknown_chunks = png_get_unknown_chunks(png_ptr,
info_ptr, &unknowns)

unknowns - array of png_unknown_chunk

16

structures holding unknown chunks
unknowns[i].name - name of unknown chunk
unknowns[i].data - data of unknown chunk
unknowns[i].size - size of unknown chunk’s data
unknowns[i].location - position of chunk in file

The value of "i" corresponds to the order in which the
chunks were read from the PNG file or inserted with the
png_set_unknown_chunks() function.

The data from the pHYs chunk can be retrieved in several convenient forms:

res_x = png_get_x_pixels_per_meter(png_ptr,
info_ptr)

res_y = png_get_y_pixels_per_meter(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_meter(png_ptr,
info_ptr)

res_x = png_get_x_pixels_per_inch(png_ptr,
info_ptr)

res_y = png_get_y_pixels_per_inch(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_inch(png_ptr,
info_ptr)

aspect_ratio = png_get_pixel_aspect_ratio(png_ptr,
info_ptr)

(Each of these returns 0 [signifying "unknown"] if
the data is not present or if res_x is 0;
res_x_and_y is 0 if res_x != res_y)

The data from the oFFs chunk can be retrieved in several convenient forms:

x_offset = png_get_x_offset_microns(png_ptr, info_ptr);
y_offset = png_get_y_offset_microns(png_ptr, info_ptr);
x_offset = png_get_x_offset_inches(png_ptr, info_ptr);
y_offset = png_get_y_offset_inches(png_ptr, info_ptr);

(Each of these returns 0 [signifying "unknown" if both
x and y are 0] if the data is not present or if the
chunk is present but the unit is the pixel)

For more information, see the png_info definition in png.h and the PNG spec-
ification for chunk contents. Be careful with trusting rowbytes, as some of the transfor-
mations could increase the space needed to hold a row (expand, filler, gray_to_rgb
, etc.). See png_read_update_info(), below.

A quick word about text_ptr and num_text. PNG stores comments in key-
word/text pairs, one pair per chunk, with no limit on the number of text chunks, and
a 2ˆ31 byte limit on their size. While there are suggested keywords, there is no re-
quirement to restrict the use to these strings. It is strongly suggested that keywords and
text be sensible to humans (that’s the point), so don’t use abbreviations. Non-printing
symbols are not allowed. See the PNG specification for more details. There is also no
requirement to have text after the keyword.

Keywords should be limited to 79 Latin-1 characters without leading or trailing
spaces, but non-consecutive spaces are allowed within the keyword. It is possible
to have the same keyword any number of times. The text_ptr is an array of
png_text structures, each holding a pointer to a language string, a pointer to a key-
word and a pointer to a text string. The text string, language code, and translated
keyword may be empty or NULL pointers. The keyword/text pairs are put into the

17

array in the order that they are received. However, some or all of the text chunks may
be after the image, so, to make sure you have read all the text chunks, don’t mess with
these until after you read the stuff after the image. This will be mentioned again below
in the discussion that goes with png_read_end().

3.2 Input transformations
After you’ve read the header information, you can set up the library to handle any
special transformations of the image data. The various ways to transform the data will
be described in the order that they should occur. This is important, as some of these
change the color type and/or bit depth of the data, and some others only work on certain
color types and bit depths. Even though each transformation checks to see if it has data
that it can do something with, you should make sure to only enable a transformation if
it will be valid for the data. For example, don’t swap red and blue on grayscale data.

The colors used for the background and transparency values should be supplied
in the same format/depth as the current image data. They are stored in the same for-
mat/depth as the image data in a bKGD or tRNS chunk, so this is what libpng expects
for this data. The colors are transformed to keep in sync with the image data when an
application calls the png_read_update_info() routine (see below).

Data will be decoded into the supplied row buffers packed into bytes unless the
library has been told to transform it into another format. For example, 4 bit/pixel palet-
ted or grayscale data will be returned 2 pixels/byte with the leftmost pixel in the high-
order bits of the byte, unless png_set_packing() is called. 8-bit RGB data will be
stored in RGB RGB RGB format unless png_set_filler() or png_set_add_alpha
() is called to insert filler bytes, either before or after each RGB triplet. 16-bit RGB
data will be returned RRGGBB RRGGBB, with the most significant byte of the color
value first, unless png_set_strip_16() is called to transform it to regular RGB
RGB triplets, or png_set_filler() or png_set_add alpha() is called to in-
sert filler bytes, either before or after each RRGGBB triplet. Similarly, 8-bit or 16-bit
grayscale data can be modified with png_set_filler(), png_set_add_alpha
(), or png_set_strip_16().

The following code transforms grayscale images of less than 8 to 8 bits, changes
paletted images to RGB, and adds a full alpha channel if there is transparency informa-
tion in a tRNS chunk. This is most useful on grayscale images with bit depths of 2 or
4 or if there is a multiple-image viewing application that wishes to treat all images in
the same way.

if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb(png_ptr);

if (color_type == PNG_COLOR_TYPE_GRAY &&
bit_depth < 8) png_set_expand_gray_1_2_4_to_8(png_ptr);

if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_tRNS)) png_set_tRNS_to_alpha(png_ptr);

These three functions are actually aliases for png_set_expand(), added in
libpng version 1.0.4, with the function names expanded to improve code readability.
In some future version they may actually do different things.

As of libpng version 1.2.9, png_set_expand_gray_1_2_4_to_8() was
added. It expands the sample depth without changing tRNS to alpha.

18

As of libpng version 1.4.0, not all possible expansions are supported.
In the following table, the 01 means grayscale with depth¡8, 31 means indexed

with depth¡8, other numerals represent the color type, ”T” means the tRNS chunk is
present, A means an alpha channel is present, and O means tRNS or alpha is present
but all pixels in the image are opaque.

FROM 01 31 0 0T 0O 2 2T 2O 3 3T 3O 4A 4O 6A 6O
TO
01 -
31 -
0 1 -
0T -
0O -
2 GX -
2T -
2O -
3 1 -
3T -
3O -
4A T -
4O -
6A GX TX TX -
6O GX TX -

Within the matrix,
"-" means the transformation is not supported.
"X" means the transformation is obtained by png_set_expand().
"1" means the transformation is obtained by

png_set_expand_gray_1_2_4_to_8
"G" means the transformation is obtained by

png_set_gray_to_rgb().
"P" means the transformation is obtained by

png_set_expand_palette_to_rgb().
"T" means the transformation is obtained by

png_set_tRNS_to_alpha().

PNG can have files with 16 bits per channel. If you only can handle 8 bits per
channel, this will strip the pixels down to 8 bit.

if (bit_depth == 16)
png_set_strip_16(png_ptr);

If, for some reason, you don’t need the alpha channel on an image, and you want to
remove it rather than combining it with the background (but the image author certainly
had in mind that you *would* combine it with the background, so that’s what you
should probably do):

if (color_type & PNG_COLOR_MASK_ALPHA)
png_set_strip_alpha(png_ptr);

In PNG files, the alpha channel in an image is the level of opacity. If you need the
alpha channel in an image to be the level of transparency instead of opacity, you can
invert the alpha channel (or the tRNS chunk data) after it’s read, so that 0 is fully opaque
and 255 (in 8-bit or paletted images) or 65535 (in 16-bit images) is fully transparent,
with

png_set_invert_alpha(png_ptr);

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can,
resulting in, for example, 8 pixels per byte for 1 bit files. This code expands to 1 pixel

19

per byte without changing the values of the pixels:

if (bit_depth < 8)
png_set_packing(png_ptr);

PNG files have possible bit depths of 1, 2, 4, 8, and 16. All pixels stored in a PNG
image have been ”scaled” or ”shifted” up to the next higher possible bit depth (e.g.
from 5 bits/sample in the range [0,31] to 8 bits/sample in the range [0, 255]). However,
it is also possible to convert the PNG pixel data back to the original bit depth of the
image. This call reduces the pixels back down to the original bit depth:

png_color_8p sig_bit;

if (png_get_sBIT(png_ptr, info_ptr, &sig_bit))
png_set_shift(png_ptr, sig_bit);

PNG files store 3-color pixels in red, green, blue order. This code changes the
storage of the pixels to blue, green, red:

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_bgr(png_ptr);

PNG files store RGB pixels packed into 3 or 6 bytes. This code expands them into
4 or 8 bytes for windowing systems that need them in this format:

if (color_type == PNG_COLOR_TYPE_RGB)
png_set_filler(png_ptr, filler, PNG_FILLER_BEFORE);

where ”filler” is the 8 or 16-bit number to fill with, and the location is either
PNG_FILLER_BEFORE or PNG_FILLER_AFTER, depending upon whether you want
the filler before the RGB or after. This transformation does not affect images that al-
ready have full alpha channels. To add an opaque alpha channel, use filler=0xff
or 0xffff and PNG_FILLER_AFTER which will generate RGBA pixels.

Note that png_set_filler() does not change the color type. If you want to
do that, you can add a true alpha channel with

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_GRAY)

png_set_add_alpha(png_ptr, filler, PNG_FILLER_AFTER);

where ”filler” contains the alpha value to assign to each pixel. This function was
added in libpng-1.2.7.

If you are reading an image with an alpha channel, and you need the data as ARGB
instead of the normal PNG format RGBA:

if (color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_swap_alpha(png_ptr);

For some uses, you may want a grayscale image to be represented as RGB. This
code will do that conversion:

if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);

Conversely, you can convert an RGB or RGBA image to grayscale or grayscale
with alpha.

20

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_rgb_to_gray_fixed(png_ptr, error_action,

int red_weight, int green_weight);

error_action = 1: silently do the conversion
error_action = 2: issue a warning if the original

image has any pixel where
red != green or red != blue

error_action = 3: issue an error and abort the
conversion if the original
image has any pixel where
red != green or red != blue

red_weight: weight of red component times 100000
green_weight: weight of green component times 100000

If either weight is negative, default
weights (21268, 71514) are used.

If you have set error_action = 1 or 2, you can later check whether the image
really was gray, after processing the image rows, with the png_get_rgb_to_gray_status
(png_ptr) function. It will return a png_byte that is zero if the image was gray
or 1 if there were any non-gray pixels. bKGD and sBIT data will be silently converted
to grayscale, using the green channel data, regardless of the error_action setting.

With red_weight+green_weight<=100000, the normalized graylevel is
computed:

int rw = red_weight * 65536;
int gw = green_weight * 65536;
int bw = 65536 - (rw + gw);
gray = (rw*red + gw*green + bw*blue)/65536;

The default values approximate those recommended in the Charles Poynton’s Color
FAQ, <http://www.inforamp.net/ poynton/>Copyright (c) 1998-01-04 Charles Poyn-
ton <poynton at inforamp.net>

Y = 0.212671 * R + 0.715160 * G + 0.072169 * B

Libpng approximates this with

Y = 0.21268 * R + 0.7151 * G + 0.07217 * B

which can be expressed with integers as

Y = (6969 * R + 23434 * G + 2365 * B)/32768

The calculation is done in a linear colorspace, if the image gamma is known.
If you have a grayscale and you are using png_set_expand_depth(), png_set_expand

(), or png_set_gray_to_rgb to change to truecolor or to a higher bit-depth,
you must either supply the background color as a gray value at the original file bit-
depth (need_expand = 1) or else supply the background color as an RGB triplet
at the final, expanded bit depth (need_expand = 0). Similarly, if you are read-
ing a paletted image, you must either supply the background color as a palette index
(need_expand = 1) or as an RGB triplet that may or may not be in the palette
(need_expand = 0).

png_color_16 my_background;
png_color_16p image_background;

21

if (png_get_bKGD(png_ptr, info_ptr, &image_background))
png_set_background(png_ptr, image_background,
PNG_BACKGROUND_GAMMA_FILE, 1, 1.0);

else
png_set_background(png_ptr, &my_background,
PNG_BACKGROUND_GAMMA_SCREEN, 0, 1.0);

The png_set_background() function tells libpng to composite images with
alpha or simple transparency against the supplied background color. If the PNG file
contains a bKGD chunk (PNG_INFO_bKGD valid), you may use this color, or supply
another color more suitable for the current display (e.g., the background color from
a web page). You need to tell libpng whether the color is in the gamma space of
the display (PNG_BACKGROUND_GAMMA_SCREEN for colors you supply), the file
(PNG_BACKGROUND_GAMMA_FILE for colors from the bKGD chunk), or one that is
neither of these gammas (PNG_BACKGROUND_GAMMA_UNIQUE - I don’t know why
anyone would use this, but it’s here).

To properly display PNG images on any kind of system, the application needs to
know what the display gamma is. Ideally, the user will know this, and the application
will allow them to set it. One method of allowing the user to set the display gamma
separately for each system is to check for a SCREEN_GAMMA or DISPLAY_GAMMA
environment variable, which will hopefully be correctly set.

Note that display_gamma is the overall gamma correction required to produce
pleasing results, which depends on the lighting conditions in the surrounding environ-
ment. In a dim or brightly lit room, no compensation other than the physical gamma
exponent of the monitor is needed, while in a dark room a slightly smaller exponent is
better.

double gamma, screen_gamma;

if (/* We have a user-defined screen
gamma value */)

{
screen_gamma = user_defined_screen_gamma;

}
/* One way that applications can share the same

screen gamma value */
else if ((gamma_str = getenv("SCREEN_GAMMA"))

!= NULL)
{

screen_gamma = (double)atof(gamma_str);
}
/* If we don’t have another value */
else
{

screen_gamma = 2.2; /* A good guess for a
PC monitor in a bright office or a dim room */

screen_gamma = 2.0; /* A good guess for a
PC monitor in a dark room */

screen_gamma = 1.7 or 1.0; /* A good
guess for Mac systems */

}

The png_set_gamma() function handles gamma transformations of the data.
Pass both the file gamma and the current screen_gamma. If the file does not have a
gamma value, you can pass one anyway if you have an idea what it is (usually 0.45455
is a good guess for GIF images on PCs). Note that file gammas are inverted from screen

22

gammas. See the discussions on gamma in the PNG specification for an excellent
description of what gamma is, and why all applications should support it. It is strongly
recommended that PNG viewers support gamma correction.

if (png_get_gAMA(png_ptr, info_ptr, &gamma))
png_set_gamma(png_ptr, screen_gamma, gamma);

else
png_set_gamma(png_ptr, screen_gamma, 0.45455);

PNG files describe monochrome as black being zero and white being one. The
following code will reverse this (make black be one and white be zero):

if (bit_depth == 1 && color_type == PNG_COLOR_TYPE_GRAY)
png_set_invert_mono(png_ptr);

This function can also be used to invert grayscale and gray-alpha images:

if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)

png_set_invert_mono(png_ptr);

PNG files store 16 bit pixels in network byte order (big-endian, ie. most significant
bits first). This code changes the storage to the other way (little-endian, i.e. least
significant bits first, the way PCs store them):

if (bit_depth == 16)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change
the order the pixels are packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

Finally, you can write your own transformation function if none of the existing ones
meets your needs. This is done by setting a callback with

png_set_read_user_transform_fn(png_ptr,
read_transform_fn);

You must supply the function

void read_transform_fn(png_ptr ptr, row_info_ptr
row_info, png_bytep data)

See pngtest.c for a working example. Your function will be called after all of the
other transformations have been processed.

You can also set up a pointer to a user structure for use by your callback function,
and you can inform libpng that your transform function will change the number of
channels or bit depth with the function

png_set_user_transform_info(png_ptr, user_ptr,
user_depth, user_channels);

The user’s application, not libpng, is responsible for allocating and freeing any
memory required for the user structure.

You can retrieve the pointer via the function png_get_user_transform_ptr
(). For example:

23

voidp read_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);

The last thing to handle is interlacing; this is covered in detail below, but you must
call the function here if you want libpng to handle expansion of the interlaced image.

number_of_passes = png_set_interlace_handling(png_ptr);

After setting the transformations, libpng can update your png_info structure to
reflect any transformations you’ve requested with this call. This is most useful to up-
date the info structure’s rowbytes field so you can use it to allocate your image mem-
ory. This function will also update your palette with the correct screen_gamma and
background if these have been given with the calls above.

png_read_update_info(png_ptr, info_ptr);

After you call png_read_update_info(), you can allocate any memory you
need to hold the image. The row data is simply raw byte data for all forms of images.
As the actual allocation varies among applications, no example will be given. If you
are allocating one large chunk, you will need to build an array of pointers to each row,
as it will be needed for some of the functions below.

3.3 Reading image data
After you’ve allocated memory, you can read the image data. The simplest way to do
this is in one function call. If you are allocating enough memory to hold the whole
image, you can just call png_read_image() and libpng will read in all the image
data and put it in the memory area supplied. You will need to pass in an array of
pointers to each row.

This function automatically handles interlacing, so you don’t need to call png_set_interlace_handling
() or call this function multiple times, or any of that other stuff necessary with png_read_rows
().

png_read_image(png_ptr, row_pointers);

where row_pointers is:

png_bytep row_pointers[height];

You can point to void or char or whatever you use for pixels.
If you don’t want to read in the whole image at once, you can use png_read_rows

() instead. If there is no interlacing (check interlace_type == PNG_INTERLACE_NONE
), this is simple:

png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);

where row_pointers is the same as in the png_read_image() call.
If you are doing this just one row at a time, you can do this with a single row_pointer

instead of an array of row_pointers:

png_bytep row_pointer = row;
png_read_row(png_ptr, row_pointer, NULL);

24

If the file is interlaced (interlace_type != 0 in the IHDR chunk), things get
somewhat harder. The only current (PNG Specification version 1.2) interlacing type for
PNG is (interlace_type == PNG_INTERLACE_ADAM7) is a somewhat com-
plicated 2D interlace scheme, known as Adam7, that breaks down an image into seven
smaller images of varying size, based on an 8x8 grid.

libpng can fill out those images or it can give them to you ”as is”. If you want them
filled out, there are two ways to do that. The one mentioned in the PNG specification is
to expand each pixel to cover those pixels that have not been read yet (the ”rectangle”
method). This results in a blocky image for the first pass, which gradually smooths
out as more pixels are read. The other method is the ”sparkle” method, where pixels
are drawn only in their final locations, with the rest of the image remaining whatever
colors they were initialized to before the start of the read. The first method usually
looks better, but tends to be slower, as there are more pixels to put in the rows.

If you don’t want libpng to handle the interlacing details, just call png_read_rows
() seven times to read in all seven images. Each of the images is a valid image by
itself, or they can all be combined on an 8x8 grid to form a single image (although
if you intend to combine them you would be far better off using the libpng interlace
handling).

The first pass will return an image 1/8 as wide as the entire image (every 8th column
starting in column 0) and 1/8 as high as the original (every 8th row starting in row 0),
the second will be 1/8 as wide (starting in column 4) and 1/8 as high (also starting in
row 0). The third pass will be 1/4 as wide (every 4th pixel starting in column 0) and
1/8 as high (every 8th row starting in row 4), and the fourth pass will be 1/4 as wide
and 1/4 as high (every 4th column starting in column 2, and every 4th row starting in
row 0). The fifth pass will return an image 1/2 as wide, and 1/4 as high (starting at
column 0 and row 2), while the sixth pass will be 1/2 as wide and 1/2 as high as the
original (starting in column 1 and row 0). The seventh and final pass will be as wide as
the original, and 1/2 as high, containing all of the odd numbered scanlines. Phew!

If you want libpng to expand the images, call this before calling png_start_read_image
() or png_read_update_info():

if (interlace_type == PNG_INTERLACE_ADAM7)
number_of_passes

= png_set_interlace_handling(png_ptr);

This will return the number of passes needed. Currently, this is seven, but may
change if another interlace type is added. This function can be called even if the file is
not interlaced, where it will return one pass.

If you are not going to display the image after each pass, but are going to wait until
the entire image is read in, use the sparkle effect. This effect is faster and the end result
of either method is exactly the same. If you are planning on displaying the image after
each pass, the ”rectangle” effect is generally considered the better looking one.

If you only want the ”sparkle” effect, just call png_read_rows() as normal,
with the third parameter NULL. Make sure you make pass over the image number_of_passes
times, and you don’t change the data in the rows between calls. You can change the

locations of the data, just not the data. Each pass only writes the pixels appropriate for
that pass, and assumes the data from previous passes is still valid.

png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);

If you only want the first effect (the rectangles), do the same as before except pass

25

the row buffer in the third parameter, and leave the second parameter NULL.

png_read_rows(png_ptr, NULL, row_pointers,
number_of_rows);

3.4 Finishing a sequential read
After you are finished reading the image through the low-level interface, you can finish
reading the file. If you are interested in comments or time, which may be stored either
before or after the image data, you should pass the separate png_info struct if you
want to keep the comments from before and after the image separate. If you are not
interested, you can pass NULL.

png_read_end(png_ptr, end_info);

When you are done, you can free all memory allocated by libpng like this:

png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);

It is also possible to individually free the info_ptr members that point to libpng-
allocated storage with the following function:

png_free_data(png_ptr, info_ptr, mask, seq)
mask - identifies data to be freed, a mask

containing the bitwise OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,

or simply PNG_FREE_ALL
seq - sequence number of item to be freed

(-1 for all items)

This function may be safely called when the relevant storage has already been freed,
or has not yet been allocated, or was allocated by the user and not by libpng, and will in
those cases do nothing. The ”seq” parameter is ignored if only one item of the selected
data type, such as PLTE, is allowed. If ”seq” is not -1, and multiple items are allowed
for the data type identified in the mask, such as text or sPLT, only the n’th item in the
structure is freed, where n is ”seq”.

The default behavior is only to free data that was allocated internally by libpng.
This can be changed, so that libpng will not free the data, or so that it will free data
that was allocated by the user with png_malloc() or png_zalloc() and passed
in via a png_set_*() function, with

png_data_freer(png_ptr, info_ptr, freer, mask)
mask - which data elements are affected

same choices as in png_free_data()
freer - one of

PNG_DESTROY_WILL_FREE_DATA
PNG_SET_WILL_FREE_DATA
PNG_USER_WILL_FREE_DATA

26

This function only affects data that has already been allocated. You can call this
function after reading the PNG data but before calling any png_set_*() func-
tions, to control whether the user or the png_set_*() function is responsible for
freeing any existing data that might be present, and again after the png_set_*()
functions to control whether the user or png_destroy_*() is supposed to free

the data. When the user assumes responsibility for libpng-allocated data, the applica-
tion must use png_free() to free it, and when the user transfers responsibility to
libpng for data that the user has allocated, the user must have used png_malloc()
or png_zalloc() to allocate it.

If you allocated your row_pointers in a single block, as suggested above in
the description of the high level read interface, you must not transfer responsibility for
freeing it to the png_set_rows or png_read_destroy function, because they
would also try to free the individual row_pointers[i].

If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword
separately, do not transfer responsibility for freeing text_ptr to libpng, because

when libpng fills a png_text structure it combines these members with the key
member, and png_free_data() will free only text_ptr.key. Similarly, if you
transfer responsibility for free’ing text_ptr from libpng to your application, your
application must not separately free those members.

The png_free_data() function will turn off the ”valid” flag for anything it
frees. If you need to turn the flag off for a chunk that was freed by your application
instead of by libpng, you can use

png_set_invalid(png_ptr, info_ptr, mask);
mask - identifies the chunks to be made invalid,

containing the bitwise OR of one or
more of
PNG_INFO_gAMA, PNG_INFO_sBIT,
PNG_INFO_cHRM, PNG_INFO_PLTE,
PNG_INFO_tRNS, PNG_INFO_bKGD,
PNG_INFO_hIST, PNG_INFO_pHYs,
PNG_INFO_oFFs, PNG_INFO_tIME,
PNG_INFO_pCAL, PNG_INFO_sRGB,
PNG_INFO_iCCP, PNG_INFO_sPLT,
PNG_INFO_sCAL, PNG_INFO_IDAT

For a more compact example of reading a PNG image, see the file example.c.

3.5 Reading PNG files progressively
The progressive reader is slightly different then the non-progressive reader. Instead of
calling png_read_info(), png_read_rows(), and png_read_end(), you
make one call to png_process_data(), which calls callbacks when it has the info,
a row, or the end of the image. You set up these callbacks with png_set_progressive_read_fn
(). You don’t have to worry about the input/output functions of libpng, as you are
giving the library the data directly in png_process_data(). I will assume that
you have read the section on reading PNG files above, so I will only highlight the
differences (although I will show all of the code).

png_structp png_ptr;
png_infop info_ptr;

/* An example code fragment of how you would
initialize the progressive reader in your

27

application. */
int
initialize_png_reader()
{

png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{

png_destroy_read_struct(&png_ptr, (png_infopp)NULL,
(png_infopp)NULL);

return (ERROR);
}

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

/* This one’s new. You can provide functions
to be called when the header info is valid,
when each row is completed, and when the image
is finished. If you aren’t using all functions,
you can specify NULL parameters. Even when all
three functions are NULL, you need to call
png_set_progressive_read_fn(). You can use
any struct as the user_ptr (cast to a void pointer
for the function call), and retrieve the pointer
from inside the callbacks using the function

png_get_progressive_ptr(png_ptr);

which will return a void pointer, which you have
to cast appropriately.

*/
png_set_progressive_read_fn(png_ptr, (void *)user_ptr,

info_callback, row_callback, end_callback);

return 0;
}

/* A code fragment that you call as you receive blocks
of data */

int
process_data(png_bytep buffer, png_uint_32 length)
{

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

/* This one’s new also. Simply give it a chunk
of data from the file stream (in order, of
course). On machines with segmented memory
models machines, don’t give it any more than

28

64K. The library seems to run fine with sizes
of 4K. Although you can give it much less if
necessary (I assume you can give it chunks of
1 byte, I haven’t tried less then 256 bytes
yet). When this function returns, you may
want to display any rows that were generated
in the row callback if you don’t already do
so there.

*/
png_process_data(png_ptr, info_ptr, buffer, length);
return 0;

}

/* This function is called (as set by
png_set_progressive_read_fn() above) when enough data
has been supplied so all of the header has been
read.

*/
void
info_callback(png_structp png_ptr, png_infop info)
{

/* Do any setup here, including setting any of
the transformations mentioned in the Reading
PNG files section. For now, you _must_ call
either png_start_read_image() or
png_read_update_info() after all the
transformations are set (even if you don’t set
any). You may start getting rows before
png_process_data() returns, so this is your
last chance to prepare for that.

*/
}

/* This function is called when each row of image
data is complete */

void
row_callback(png_structp png_ptr, png_bytep new_row,

png_uint_32 row_num, int pass)
{

/* If the image is interlaced, and you turned
on the interlace handler, this function will
be called for every row in every pass. Some
of these rows will not be changed from the
previous pass. When the row is not changed,
the new_row variable will be NULL. The rows
and passes are called in order, so you don’t
really need the row_num and pass, but I’m
supplying them because it may make your life
easier.

For the non-NULL rows of interlaced images,
you must call png_progressive_combine_row()
passing in the row and the old row. You can
call this function for NULL rows (it will just
return) and for non-interlaced images (it just
does the memcpy for you) if it will make the
code easier. Thus, you can just do this for
all cases:

*/

png_progressive_combine_row(png_ptr, old_row,
new_row);

29

/* where old_row is what was displayed for
previously for the row. Note that the first
pass (pass == 0, really) will completely cover
the old row, so the rows do not have to be
initialized. After the first pass (and only
for interlaced images), you will have to pass
the current row, and the function will combine
the old row and the new row.

*/
}

void
end_callback(png_structp png_ptr, png_infop info)
{

/* This function is called after the whole image
has been read, including any chunks after the
image (up to and including the IEND). You
will usually have the same info chunk as you
had in the header, although some data may have
been added to the comments and time fields.

Most people won’t do much here, perhaps setting
a flag that marks the image as finished.

*/
}

30

Chapter 4

IV. Writing

Much of this is very similar to reading. However, everything of importance is repeated
here, so you won’t have to constantly look back up in the reading section to understand
writing.

4.1 Setup
You will want to do the I/O initialization before you get into libpng, so if it doesn’t
work, you don’t have anything to undo. If you are not using the standard I/O functions,
you will need to replace them with custom writing functions. See the discussion under
Customizing libpng.

FILE *fp = fopen(file_name, "wb");
if (!fp)
{

return (ERROR);
}

Next, png_struct and png_info need to be allocated and initialized. As these
can be both relatively large, you may not want to store these on the stack, unless you
have stack space to spare. Of course, you will want to check if they return NULL. If you
are also reading, you won’t want to name your read structure and your write structure
both ”png_ptr”; you can call them anything you like, such as ”read_ptr” and
”write_ptr”. Look at pngtest.c, for example.

png_structp png_ptr = png_create_write_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{

png_destroy_write_struct(&png_ptr,
(png_infopp)NULL);

return (ERROR);
}

31

If you want to use your own memory allocation routines, define PNG_USER_MEM_SUPPORTED
and use png_create_write_struct_2() instead of png_create_write_struct
():

png_structp png_ptr = png_create_write_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);

After you have these structures, you will need to set up the error handling. When
libpng encounters an error, it expects to longjmp() back to your routine. There-
fore, you will need to call setjmp() and pass the png_jmpbuf(png_ptr). If
you write the file from different routines, you will need to update the png_jmpbuf
(png_ptr) every time you enter a new routine that will call a png_*() function.
See your documentation of setjmp/longjmp for your compiler for more information
on setjmp/longjmp. See the discussion on libpng error handling in the Customizing
Libpng section below for more information on the libpng error handling.

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(fp);
return (ERROR);

}
...
return;

If you would rather avoid the complexity of setjmp/longjmp issues, you can com-
pile libpng with PNG_SETJMP_NOT_SUPPORTED, in which case errors will result
in a call to PNG_ABORT() which defaults to abort().

Now you need to set up the output code. The default for libpng is to use the C
function fwrite(). If you use this, you will need to pass a valid FILE * in the
function png_init_io(). Be sure that the file is opened in binary mode. Again,
if you wish to handle writing data in another way, see the discussion on libpng I/O
handling in the Customizing Libpng section below.

png_init_io(png_ptr, fp);

If you are embedding your PNG into a datastream such as MNG, and don’t want
libpng to write the 8-byte signature, or if you have already written the signature in your
application, use

png_set_sig_bytes(png_ptr, 8);

to inform libpng that it should not write a signature.

4.2 Write callbacks
At this point, you can set up a callback function that will be called after each row has
been written, which you can use to control a progress meter or the like. It’s demon-
strated in pngtest.c. You must supply a function

void write_row_callback(png_ptr, png_uint_32 row,
int pass);

{
/* put your code here */

}

32

(You can give it another name that you like instead of ”write_row_callback
”)

To inform libpng about your function, use

png_set_write_status_fn(png_ptr, write_row_callback);

You now have the option of modifying how the compression library will run. The
following functions are mainly for testing, but may be useful in some cases, like if you
need to write PNG files extremely fast and are willing to give up some compression, or
if you want to get the maximum possible compression at the expense of slower writing.
If you have no special needs in this area, let the library do what it wants by not calling
this function at all, as it has been tuned to deliver a good speed/compression ratio. The
second parameter to png_set_filter() is the filter method, for which the only
valid values are 0 (as of the July 1999 PNG specification, version 1.2) or 64 (if you
are writing a PNG datastream that is to be embedded in a MNG datastream). The third
parameter is a flag that indicates which filter type(s) are to be tested for each scanline.
See the PNG specification for details on the specific filter types.

/* turn on or off filtering, and/or choose
specific filters. You can use either a single
PNG_FILTER_VALUE_NAME or the bitwise OR of one
or more PNG_FILTER_NAME masks. */

png_set_filter(png_ptr, 0,
PNG_FILTER_NONE | PNG_FILTER_VALUE_NONE |
PNG_FILTER_SUB | PNG_FILTER_VALUE_SUB |
PNG_FILTER_UP | PNG_FILTER_VALUE_UP |
PNG_FILTER_AVG | PNG_FILTER_VALUE_AVG |
PNG_FILTER_PAETH | PNG_FILTER_VALUE_PAETH|
PNG_ALL_FILTERS);

If an application wants to start and stop using particular filters during compression,
it should start out with all of the filters (to ensure that the previous row of pixels will
be stored in case it’s needed later), and then add and remove them after the start of
compression.

If you are writing a PNG datastream that is to be embedded in a MNG datastream,
the second parameter can be either 0 or 64.

The png_set_compression_*() functions interface to the zlib compression
library, and should mostly be ignored unless you really know what you are doing. The
only generally useful call is png_set_compression_level() which changes
how much time zlib spends on trying to compress the image data. See the Compression
Library (zlib.h and algorithm.txt, distributed with zlib) for details on the compression
levels.

/* set the zlib compression level */
png_set_compression_level(png_ptr,

Z_BEST_COMPRESSION);

/* set other zlib parameters */
png_set_compression_mem_level(png_ptr, 8);
png_set_compression_strategy(png_ptr,

Z_DEFAULT_STRATEGY);
png_set_compression_window_bits(png_ptr, 15);
png_set_compression_method(png_ptr, 8);
png_set_compression_buffer_size(png_ptr, 8192)

extern PNG_EXPORT(void,png_set_zbuf_size)

33

4.3 Setting the contents of info for output
You now need to fill in the png_info structure with all the data you wish to write
before the actual image. Note that the only thing you are allowed to write after the
image is the text chunks and the time chunk (as of PNG Specification 1.2, anyway). See
png_write_end() and the latest PNG specification for more information on that.
If you wish to write them before the image, fill them in now, and flag that data as being
valid. If you want to wait until after the data, don’t fill them until png_write_end
(). For all the fields in png_info and their data types, see png.h. For explanations
of what the fields contain, see the PNG specification.

Some of the more important parts of the png_info are:

png_set_IHDR(png_ptr, info_ptr, width, height,
bit_depth, color_type, interlace_type,
compression_type, filter_method)

width - holds the width of the image
in pixels (up to 2ˆ31).

height - holds the height of the image
in pixels (up to 2ˆ31).

bit_depth - holds the bit depth of one of the
image channels.
(valid values are 1, 2, 4, 8, 16
and depend also on the
color_type. See also significant
bits (sBIT) below).

color_type - describes which color/alpha
channels are present.
PNG_COLOR_TYPE_GRAY

(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA

(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE

(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB

(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA

(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace_type - PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7

compression_type - (must be
PNG_COMPRESSION_TYPE_DEFAULT)

filter_method - (must be PNG_FILTER_TYPE_DEFAULT
or, if you are writing a PNG to
be embedded in a MNG datastream,
can also be
PNG_INTRAPIXEL_DIFFERENCING)

If you call png_set_IHDR(), the call must appear before any of the other png_set_
*() functions, because they might require access to some of the IHDR settings. The
remaining png_set_*() functions can be called in any order.

If you wish, you can reset the compression_type, interlace_type, or
filter_method later by calling png_set_IHDR() again; if you do this, the
width, height, bit_depth, and color_type must be the same in each call.

34

png_set_PLTE(png_ptr, info_ptr, palette,
num_palette);

palette - the palette for the file
(array of png_color)

num_palette - number of entries in the palette

png_set_gAMA(png_ptr, info_ptr, gamma);
gamma - the gamma the image was created

at (PNG_INFO_gAMA)

png_set_sRGB(png_ptr, info_ptr, srgb_intent);
srgb_intent - the rendering intent

(PNG_INFO_sRGB) The presence of
the sRGB chunk means that the pixel
data is in the sRGB color space.
This chunk also implies specific
values of gAMA and cHRM. Rendering
intent is the CSS-1 property that
has been defined by the International
Color Consortium
(http://www.color.org).
It can be one of
PNG_sRGB_INTENT_SATURATION,
PNG_sRGB_INTENT_PERCEPTUAL,
PNG_sRGB_INTENT_ABSOLUTE, or
PNG_sRGB_INTENT_RELATIVE.

png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr,
srgb_intent);

srgb_intent - the rendering intent
(PNG_INFO_sRGB) The presence of the
sRGB chunk means that the pixel
data is in the sRGB color space.
This function also causes gAMA and
cHRM chunks with the specific values
that are consistent with sRGB to be
written.

png_set_iCCP(png_ptr, info_ptr, name, compression_type,
profile, proflen);

name - The profile name.
compression - The compression type; always

PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.

profile - International Color Consortium color
profile data. May contain NULs.

proflen - length of profile data in bytes.

png_set_sBIT(png_ptr, info_ptr, sig_bit);
sig_bit - the number of significant bits for

(PNG_INFO_sBIT) each of the gray, red,
green, and blue channels, whichever are
appropriate for the given color type
(png_color_16)

png_set_tRNS(png_ptr, info_ptr, trans_alpha,
num_trans, trans_color);

trans_alpha - array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)

trans_color - graylevel or color sample values

35

(in order red, green, blue) of the
single transparent color for
non-paletted images (PNG_INFO_tRNS)

num_trans - number of transparent entries
(PNG_INFO_tRNS)

png_set_hIST(png_ptr, info_ptr, hist);
(PNG_INFO_hIST)

hist - histogram of palette (array of
png_uint_16)

png_set_tIME(png_ptr, info_ptr, mod_time);
mod_time - time image was last modified

(PNG_VALID_tIME)

png_set_bKGD(png_ptr, info_ptr, background);
background - background color (PNG_VALID_bKGD)

png_set_text(png_ptr, info_ptr, text_ptr, num_text);
text_ptr - array of png_text holding image

comments
text_ptr[i].compression - type of compression used

on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[i].key - keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Can be NULL or empty.

text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt

text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt

text_ptr[i].lang - language of comment (NULL or
empty for unknown).

text_ptr[i].translated_keyword - keyword in UTF-8 (NULL
or empty for unknown).

Note that the itxt_length, lang, and lang_key
members of the text_ptr structure only exist
when the library is built with iTXt chunk support.

num_text - number of comments

png_set_sPLT(png_ptr, info_ptr, &palette_ptr,
num_spalettes);

palette_ptr - array of png_sPLT_struct structures
to be added to the list of palettes
in the info structure.

num_spalettes - number of palette structures to be
added.

png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y,
unit_type);

offset_x - positive offset from the left
edge of the screen

offset_y - positive offset from the top
edge of the screen

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_set_pHYs(png_ptr, info_ptr, res_x, res_y,
unit_type);

36

res_x - pixels/unit physical resolution
in x direction

res_y - pixels/unit physical resolution
in y direction

unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_set_sCAL(png_ptr, info_ptr, unit, width, height)
unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are doubles)

png_set_sCAL_s(png_ptr, info_ptr, unit, width, height)
unit - physical scale units (an integer)
width - width of a pixel in physical scale units
height - height of a pixel in physical scale units

(width and height are strings like "2.54")

png_set_unknown_chunks(png_ptr, info_ptr, &unknowns,
num_unknowns)

unknowns - array of png_unknown_chunk
structures holding unknown chunks

unknowns[i].name - name of unknown chunk
unknowns[i].data - data of unknown chunk
unknowns[i].size - size of unknown chunk’s data
unknowns[i].location - position to write chunk in file

0: do not write chunk
PNG_HAVE_IHDR: before PLTE
PNG_HAVE_PLTE: before IDAT
PNG_AFTER_IDAT: after IDAT

The ”location” member is set automatically according to what part of the output file
has already been written. You can change its value after calling png_set_unknown_chunks
() as demonstrated in pngtest.c. Within each of the ”locations”, the chunks are se-
quenced according to their position in the structure (that is, the value of ”i”, which
is the order in which the chunk was either read from the input file or defined with
png_set_unknown_chunks).

A quick word about text and num_text. text is an array of png_text structures.
num_text is the number of valid structures in the array. Each png_text structure
holds a language code, a keyword, a text value, and a compression type.

The compression types have the same valid numbers as the compression types of
the image data. Currently, the only valid number is zero. However, you can store
text either compressed or uncompressed, unlike images, which always have to be
compressed. So if you don’t want the text compressed, set the compression type to
PNG_TEXT_COMPRESSION_NONE. Because tEXt and zTXt chunks don’t have a
language field, if you specify PNG_TEXT_COMPRESSION_NONE or PNG_TEXT_COMPRESSION_zTXt
any language code or translated keyword will not be written out.

Until text gets around 1000 bytes, it is not worth compressing it. After the text has
been written out to the file, the compression type is set to PNG_TEXT_COMPRESSION_NONE_WR
or PNG_TEXT_COMPRESSION_zTXt_WR, so that it isn’t written out again at the

end (in case you are calling png_write_end() with the same struct.
The keywords that are given in the PNG Specification are:

Title Short (one line) title or
caption for image

Author Name of image’s creator

37

Description Description of image (possibly long)
Copyright Copyright notice
Creation Time Time of original image creation

(usually RFC 1123 format, see below)
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion

from other image format

The keyword-text pairs work like this. Keywords should be short simple descrip-
tions of what the comment is about. Some typical keywords are found in the PNG
specification, as is some recommendations on keywords. You can repeat keywords in
a file. You can even write some text before the image and some after. For example,
you may want to put a description of the image before the image, but leave the dis-
claimer until after, so viewers working over modem connections don’t have to wait
for the disclaimer to go over the modem before they start seeing the image. Finally,
keywords should be full words, not abbreviations. Keywords and text are in the ISO
8859-1 (Latin-1) character set (a superset of regular ASCII) and can not contain NUL
characters, and should not contain control or other unprintable characters. To make the
comments widely readable, stick with basic ASCII, and avoid machine specific char-
acter set extensions like the IBM-PC character set. The keyword must be present, but
you can leave off the text string on non-compressed pairs. Compressed pairs must have
a text string, as only the text string is compressed anyway, so the compression would
be meaningless.

PNG supports modification time via the png_time structure. Two conversion rou-
tines are provided, png_convert_from_time_t() for time_t and png_convert_from_struct_tm
() for struct tm. The time_t routine uses gmtime(). You don’t have to use
either of these, but if you wish to fill in the png_time structure directly, you should
provide the time in universal time (GMT) if possible instead of your local time. Note
that the year number is the full year (e.g. 1998, rather than 98 - PNG is year 2000
compliant!), and that months start with 1.

If you want to store the time of the original image creation, you should use a plain
tEXt chunk with the ”Creation Time” keyword. This is necessary because the ”creation
time” of a PNG image is somewhat vague, depending on whether you mean the PNG
file, the time the image was created in a non-PNG format, a still photo from which
the image was scanned, or possibly the subject matter itself. In order to facilitate
machine-readable dates, it is recommended that the ”Creation Time” tEXt chunk use
RFC 1123 format dates (e.g. ”22 May 1997 18:07:10 GMT”), although this isn’t a
requirement. Unlike the tIME chunk, the ”Creation Time” tEXt chunk is not expected
to be automatically changed by the software. To facilitate the use of RFC 1123 dates, a
function png_convert_to_rfc1123(png_timep) is provided to convert from
PNG time to an RFC 1123 format string.

4.4 Writing unknown chunks
You can use the png_set_unknown_chunks function to queue up chunks for writ-
ing. You give it a chunk name, raw data, and a size; that’s all there is to it. The
chunks will be written by the next following png_write_info_before_PLTE
, png_write_info, or png_write_end function. Any chunks previously read

38

into the info structure’s unknown-chunk list will also be written out in a sequence that
satisfies the PNG specification’s ordering rules.

4.5 The high-level write interface
At this point there are two ways to proceed; through the high-level write interface, or
through a sequence of low-level write operations. You can use the high-level interface
if your image data is present in the info structure. All defined output transformations
are permitted, enabled by the following masks.

PNG_TRANSFORM_IDENTITY No transformation
PNG_TRANSFORM_PACKING Pack 1, 2 and 4-bit samples
PNG_TRANSFORM_PACKSWAP Change order of packed

pixels to LSB first
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixels to the

sBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA

to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA

to AG
PNG_TRANSFORM_INVERT_ALPHA Change alpha from opacity

to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_STRIP_FILLER Strip out filler

bytes (deprecated).
PNG_TRANSFORM_STRIP_FILLER_BEFORE Strip out leading

filler bytes
PNG_TRANSFORM_STRIP_FILLER_AFTER Strip out trailing

filler bytes

If you have valid image data in the info structure (you can use png_set_rows()
to put image data in the info structure), simply do this:

png_write_png(png_ptr, info_ptr, png_transforms, NULL)

where png_transforms is an integer containing the bitwise OR of some set of
transformation flags. This call is equivalent to png_write_info(), followed the
set of transformations indicated by the transform mask, then png_write_image(),
and finally png_write_end().

(The final parameter of this call is not yet used. Someday it might point to trans-
formation parameters required by some future output transform.)

You must use png_transforms and not call any png_set_transform()
functions when you use png_write_png().

4.6 The low-level write interface
If you are going the low-level route instead, you are now ready to write all the file
information up to the actual image data. You do this with a call to png_write_info
().

png_write_info(png_ptr, info_ptr);

Note that there is one transformation you may need to do before png_write_info
(). In PNG files, the alpha channel in an image is the level of opacity. If your data is

39

supplied as a level of transparency, you can invert the alpha channel before you write
it, so that 0 is fully transparent and 255 (in 8-bit or paletted images) or 65535 (in 16-bit
images) is fully opaque, with

png_set_invert_alpha(png_ptr);

This must appear before png_write_info() instead of later with the other
transformations because in the case of paletted images the tRNS chunk data has to be
inverted before the tRNS chunk is written. If your image is not a paletted image, the
tRNS data (which in such cases represents a single color to be rendered as transpar-
ent) won’t need to be changed, and you can safely do this transformation after your
png_write_info() call.

If you need to write a private chunk that you want to appear before the PLTE chunk
when PLTE is present, you can write the PNG info in two steps, and insert code to
write your own chunk between them:

png_write_info_before_PLTE(png_ptr, info_ptr);
png_set_unknown_chunks(png_ptr, info_ptr, ...);
png_write_info(png_ptr, info_ptr);

After you’ve written the file information, you can set up the library to handle any
special transformations of the image data. The various ways to transform the data will
be described in the order that they should occur. This is important, as some of these
change the color type and/or bit depth of the data, and some others only work on certain
color types and bit depths. Even though each transformation checks to see if it has data
that it can do something with, you should make sure to only enable a transformation if
it will be valid for the data. For example, don’t swap red and blue on grayscale data.

PNG files store RGB pixels packed into 3 or 6 bytes. This code tells the library to
strip input data that has 4 or 8 bytes per pixel down to 3 or 6 bytes (or strip 2 or 4-byte
grayscale+filler data to 1 or 2 bytes per pixel).

png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE);

where the 0 is unused, and the location is either PNG_FILLER_BEFORE or PNG_FILLER_AFTER
, depending upon whether the filler byte in the pixel is stored XRGB or RGBX.

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can,
resulting in, for example, 8 pixels per byte for 1 bit files. If the data is supplied at 1
pixel per byte, use this code, which will correctly pack the pixels into a single byte:

png_set_packing(png_ptr);

PNG files reduce possible bit depths to 1, 2, 4, 8, and 16. If your data is of another
bit depth, you can write an sBIT chunk into the file so that decoders can recover the
original data if desired.

/* Set the true bit depth of the image data */
if (color_type & PNG_COLOR_MASK_COLOR)
{

sig_bit.red = true_bit_depth;
sig_bit.green = true_bit_depth;
sig_bit.blue = true_bit_depth;

}
else
{

sig_bit.gray = true_bit_depth;
}
if (color_type & PNG_COLOR_MASK_ALPHA)

40

{
sig_bit.alpha = true_bit_depth;

}

png_set_sBIT(png_ptr, info_ptr, &sig_bit);

If the data is stored in the row buffer in a bit depth other than one supported by
PNG (e.g. 3 bit data in the range 0-7 for a 4-bit PNG), this will scale the values to
appear to be the correct bit depth as is required by PNG.

png_set_shift(png_ptr, &sig_bit);

PNG files store 16 bit pixels in network byte order (big-endian, ie. most significant
bits first). This code would be used if they are supplied the other way (little-endian, i.e.
least significant bits first, the way PCs store them):

if (bit_depth > 8)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change
the order the pixels are packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

PNG files store 3 color pixels in red, green, blue order. This code would be used if
they are supplied as blue, green, red:

png_set_bgr(png_ptr);

PNG files describe monochrome as black being zero and white being one. This
code would be used if the pixels are supplied with this reversed (black being one and
white being zero):

png_set_invert_mono(png_ptr);

Finally, you can write your own transformation function if none of the existing ones
meets your needs. This is done by setting a callback with

png_set_write_user_transform_fn(png_ptr,
write_transform_fn);

You must supply the function

void write_transform_fn(png_ptr ptr, row_info_ptr
row_info, png_bytep data)

See pngtest.c for a working example. Your function will be called before any of the
other transformations are processed.

You can also set up a pointer to a user structure for use by your callback function.

png_set_user_transform_info(png_ptr, user_ptr, 0, 0);

The user_channels and user_depth parameters of this function are ignored
when writing; you can set them to zero as shown.

You can retrieve the pointer via the function png_get_user_transform_ptr
(). For example:

voidp write_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);

41

It is possible to have libpng flush any pending output, either manually, or automat-
ically after a certain number of lines have been written. To flush the output stream a
single time call:

png_write_flush(png_ptr);

and to have libpng flush the output stream periodically after a certain number of
scanlines have been written, call:

png_set_flush(png_ptr, nrows);

Note that the distance between rows is from the last time png_write_flush()
was called, or the first row of the image if it has never been called. So if you write
50 lines, and then png_set_flush 25, it will flush the output on the next scanline,
and every 25 lines thereafter, unless png_write_flush() is called before 25 more
lines have been written. If nrows is too small (less than about 10 lines for a 640 pixel
wide RGB image) the image compression may decrease noticeably (although this may
be acceptable for real-time applications). Infrequent flushing will only degrade the
compression performance by a few percent over images that do not use flushing.

4.7 Writing the image data
That’s it for the transformations. Now you can write the image data. The simplest way
to do this is in one function call. If you have the whole image in memory, you can just
call png_write_image() and libpng will write the image. You will need to pass
in an array of pointers to each row. This function automatically handles interlacing, so
you don’t need to call png_set_interlace_handling() or call this function
multiple times, or any of that other stuff necessary with png_write_rows().

png_write_image(png_ptr, row_pointers);

where row_pointers is:

png_byte *row_pointers[height];

You can point to void or char or whatever you use for pixels.
If you don’t want to write the whole image at once, you can use png_write_rows

() instead. If the file is not interlaced, this is simple:

png_write_rows(png_ptr, row_pointers,
number_of_rows);

row_pointers is the same as in the png_write_image() call.
If you are just writing one row at a time, you can do this with a single row_pointer

instead of an array of row_pointers:

png_bytep row_pointer = row;

png_write_row(png_ptr, row_pointer);

When the file is interlaced, things can get a good deal more complicated. The only
currently (as of the PNG Specification version 1.2, dated July 1999) defined interlacing
scheme for PNG files is the ”Adam7” interlace scheme, that breaks down an image into
seven smaller images of varying size. libpng will build these images for you, or you

42

can do them yourself. If you want to build them yourself, see the PNG specification
for details of which pixels to write when.

If you don’t want libpng to handle the interlacing details, just use png_set_interlace_handling
() and call png_write_rows() the correct number of times to write all seven sub-
images.

If you want libpng to build the sub-images, call this before you start writing any
rows:

number_of_passes =
png_set_interlace_handling(png_ptr);

This will return the number of passes needed. Currently, this is seven, but may
change if another interlace type is added.

Then write the complete image number_of_passes times.

png_write_rows(png_ptr, row_pointers,
number_of_rows);

As some of these rows are not used, and thus return immediately, you may want
to read about interlacing in the PNG specification, and only update the rows that are
actually used.

4.8 Finishing a sequential write
After you are finished writing the image, you should finish writing the file. If you
are interested in writing comments or time, you should pass an appropriately filled
png_info pointer. If you are not interested, you can pass NULL.

png_write_end(png_ptr, info_ptr);

When you are done, you can free all memory used by libpng like this:

png_destroy_write_struct(&png_ptr, &info_ptr);

It is also possible to individually free the info_ptr members that point to libpng-
allocated storage with the following function:

png_free_data(png_ptr, info_ptr, mask, seq)
mask - identifies data to be freed, a mask

containing the bitwise OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,

or simply PNG_FREE_ALL
seq - sequence number of item to be freed

(-1 for all items)

This function may be safely called when the relevant storage has already been freed,
or has not yet been allocated, or was allocated by the user and not by libpng, and will in
those cases do nothing. The ”seq” parameter is ignored if only one item of the selected
data type, such as PLTE, is allowed. If ”seq” is not -1, and multiple items are allowed
for the data type identified in the mask, such as text or sPLT, only the n’th item in the
structure is freed, where n is ”seq”.

43

If you allocated data such as a palette that you passed in to libpng with png_set_
*, you must not free it until just before the call to png_destroy_write_struct
().

The default behavior is only to free data that was allocated internally by libpng.
This can be changed, so that libpng will not free the data, or so that it will free data
that was allocated by the user with png_malloc() or png_zalloc() and passed
in via a png_set_*() function, with

png_data_freer(png_ptr, info_ptr, freer, mask)
mask - which data elements are affected

same choices as in png_free_data()
freer - one of

PNG_DESTROY_WILL_FREE_DATA
PNG_SET_WILL_FREE_DATA
PNG_USER_WILL_FREE_DATA

For example, to transfer responsibility for some data from a read structure to a write
structure, you could use

png_data_freer(read_ptr, read_info_ptr,
PNG_USER_WILL_FREE_DATA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

png_data_freer(write_ptr, write_info_ptr,
PNG_DESTROY_WILL_FREE_DATA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

thereby briefly reassigning responsibility for freeing to the user but immediately
afterwards reassigning it once more to the write_destroy function. Having done
this, it would then be safe to destroy the read structure and continue to use the PLTE,
tRNS, and hIST data in the write structure.

This function only affects data that has already been allocated. You can call this
function before calling after the png_set_*() functions to control whether the user
or png_destroy_*() is supposed to free the data. When the user assumes respon-
sibility for libpng-allocated data, the application must use png_free() to free it, and
when the user transfers responsibility to libpng for data that the user has allocated, the
user must have used png_malloc() or png_zalloc() to allocate it.

If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword
separately, do not transfer responsibility for freeing text_ptr to libpng, because

when libpng fills a png_text structure it combines these members with the key
member, and png_free_data() will free only text_ptr.key. Similarly, if you
transfer responsibility for free’ing text_ptr from libpng to your application, your
application must not separately free those members. For a more compact example of
writing a PNG image, see the file example.c.

44

Chapter 5

V. Modifying/Customizing
libpng:

There are two issues here. The first is changing how libpng does standard things like
memory allocation, input/output, and error handling. The second deals with more
complicated things like adding new chunks, adding new transformations, and gener-
ally changing how libpng works. Both of those are compile-time issues; that is, they
are generally determined at the time the code is written, and there is rarely a need to
provide the user with a means of changing them.

5.1 Memory allocation, input/output, and error han-
dling

All of the memory allocation, input/output, and error handling in libpng goes through
callbacks that are user-settable. The default routines are in pngmem.c, pngrio.c, png-
wio.c, and pngerror.c, respectively. To change these functions, call the appropriate
png_set_*_fn() function.

Memory allocation is done through the functions png_malloc(), png_calloc
(), and png_free(). These currently just call the standard C functions. png_calloc
() calls png_malloc() and then png_memset() to clear the newly allocated
memory to zero. If your pointers can’t access more then 64K at a time, you will want
to set MAXSEG_64K in zlib.h. Since it is unlikely that the method of handling mem-
ory allocation on a platform will change between applications, these functions must
be modified in the library at compile time. If you prefer to use a different method
of allocating and freeing data, you can use png_create_read_struct_2() or
png_create_write_struct_2() to register your own functions as described
above. These functions also provide a void pointer that can be retrieved via

mem_ptr=png_get_mem_ptr(png_ptr);

Your replacement memory functions must have prototypes as follows:

png_voidp malloc_fn(png_structp png_ptr,
png_size_t size);

void free_fn(png_structp png_ptr, png_voidp ptr);

45

Your malloc_fn() must return NULL in case of failure. The png_malloc()
function will normally call png_error() if it receives a NULL from the system

memory allocator or from your replacement malloc_fn().
Your free_fn()will never be called with a NULL ptr, since libpng’s png_free

() checks for NULL before calling free_fn().
Input/Output in libpng is done through png_read() and png_write(), which

currently just call fread() and fwrite(). The FILE * is stored in png_struct
and is initialized via png_init_io(). If you wish to change the method of I/O, the
library supplies callbacks that you can set through the function png_set_read_fn
() and png_set_write_fn() at run time, instead of calling the png_init_io
() function. These functions also provide a void pointer that can be retrieved via the
function png_get_io_ptr(). For example:

png_set_read_fn(png_structp read_ptr,
voidp read_io_ptr, png_rw_ptr read_data_fn)

png_set_write_fn(png_structp write_ptr,
voidp write_io_ptr, png_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);

voidp read_io_ptr = png_get_io_ptr(read_ptr);
voidp write_io_ptr = png_get_io_ptr(write_ptr);

The replacement I/O functions must have prototypes as follows:

void user_read_data(png_structp png_ptr,
png_bytep data, png_size_t length);

void user_write_data(png_structp png_ptr,
png_bytep data, png_size_t length);

void user_flush_data(png_structp png_ptr);

The user_read_data() function is responsible for detecting and handling end
-of-data errors.

Supplying NULL for the read, write, or flush functions sets them back to using
the default C stream functions, which expect the io_ptr to point to a standard FILE
* structure. It is probably a mistake to use NULL for one of write_data_fn

and output_flush_fn but not both of them, unless you have built libpng with
PNG_NO_WRITE_FLUSH defined. It is an error to read from a write stream, and vice
versa.

Error handling in libpng is done through png_error() and png_warning
(). Errors handled through png_error() are fatal, meaning that png_error
() should never return to its caller. Currently, this is handled via setjmp() and
longjmp() (unless you have compiled libpng with PNG_SETJMP_NOT_SUPPORTED
, in which case it is handled via PNG_ABORT()), but you could change this to do
things like exit() if you should wish.

On non-fatal errors, png_warning() is called to print a warning message, and
then control returns to the calling code. By default png_error() and png_warning
() print a message on stderr via fprintf() unless the library is compiled with
PNG_NO_CONSOLE_IO defined (because you don’t want the messages) or PNG_NO_STDIO
defined (because fprintf() isn’t available). If you wish to change the behavior

of the error functions, you will need to set up your own message callbacks. These
functions are normally supplied at the time that the png_struct is created. It is
also possible to redirect errors and warnings to your own replacement functions after
png_create_*_struct() has been called by calling:

46

png_set_error_fn(png_structp png_ptr,
png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warning_fn);

png_voidp error_ptr = png_get_error_ptr(png_ptr);

If NULL is supplied for either error_fn or warning_fn, then the libpng de-
fault function will be used, calling fprintf() and/or longjmp() if a problem is
encountered. The replacement error functions should have parameters as follows:

void user_error_fn(png_structp png_ptr,
png_const_charp error_msg);

void user_warning_fn(png_structp png_ptr,
png_const_charp warning_msg);

The motivation behind using setjmp() and longjmp() is the C++ throw and catch
exception handling methods. This makes the code much easier to write, as there is
no need to check every return code of every function call. However, there are some
uncertainties about the status of local variables after a longjmp, so the user may want to
be careful about doing anything after setjmp returns non-zero besides returning itself.
Consult your compiler documentation for more details. For an alternative approach,
you may wish to use the ”cexcept” facility (see http://cexcept.sourceforge.net).

5.2 Custom chunks
If you need to read or write custom chunks, you may need to get deeper into the libpng
code. The library now has mechanisms for storing and writing chunks of unknown
type; you can even declare callbacks for custom chunks. However, this may not be
good enough if the library code itself needs to know about interactions between your
chunk and existing ‘intrinsic’ chunks.

If you need to write a new intrinsic chunk, first read the PNG specification. Acquire
a first level of understanding of how it works. Pay particular attention to the sections
that describe chunk names, and look at how other chunks were designed, so you can do
things similarly. Second, check out the sections of libpng that read and write chunks.
Try to find a chunk that is similar to yours and use it as a template. More details can
be found in the comments inside the code. It is best to handle unknown chunks in a
generic method, via callback functions, instead of by modifying libpng functions.

If you wish to write your own transformation for the data, look through the part of
the code that does the transformations, and check out some of the simpler ones to get
an idea of how they work. Try to find a similar transformation to the one you want
to add and copy off of it. More details can be found in the comments inside the code
itself.

5.3 Configuring for 16 bit platforms
You will want to look into zconf.h to tell zlib (and thus libpng) that it cannot allocate
more then 64K at a time. Even if you can, the memory won’t be accessible. So limit
zlib and libpng to 64K by defining MAXSEG_64.

47

5.4 Configuring for DOS
For DOS users who only have access to the lower 640K, you will have to limit zlib’s
memory usage via a png_set_compression_mem_level() call. See zlib.h or
zconf.h in the zlib library for more information.

5.5 Configuring for Medium Model
Libpng’s support for medium model has been tested on most of the popular compilers.
Make sure MAXSEG_64K gets defined, USE_FAR_KEYWORD gets defined, and FAR
gets defined to far in pngconf.h, and you should be all set. Everything in the library
(except for zlib’s structure) is expecting far data. You must use the typedefs with the p
or pp on the end for pointers (or at least look at them and be careful). Make note that
the rows of data are defined as png_bytepp, which is an unsigned char far * far *.

5.6 Configuring for gui/windowing platforms:
You will need to write new error and warning functions that use the GUI interface,
as described previously, and set them to be the error and warning functions at the time
that png_create_*_struct() is called, in order to have them available during the
structure initialization. They can be changed later via png_set_error_fn(). On
some compilers, you may also have to change the memory allocators (png_malloc,
etc.).

5.7 Configuring for compiler xxx:
All includes for libpng are in pngconf.h. If you need to add, change or delete an include,
this is the place to do it. The includes that are not needed outside libpng are placed in
pngpriv.h, which is only used by the routines inside libpng itself. The files in libpng
proper only include pngpriv.h and png.h, which in turn includes pngconf.h.

5.8 Configuring zlib:
There are special functions to configure the compression. Perhaps the most useful one
changes the compression level, which currently uses input compression values in the
range 0 - 9. The library normally uses the default compression level (Z_DEFAULT_COMPRESSION
= 6). Tests have shown that for a large majority of images, compression values in

the range 3-6 compress nearly as well as higher levels, and do so much faster. For on-
line applications it may be desirable to have maximum speed Z_BEST_SPEED = 1).
With versions of zlib after v0.99, you can also specify no compression (Z_NO_COMPRESSION
= 0), but this would create files larger than just storing the raw bitmap. You can

specify the compression level by calling:

png_set_compression_level(png_ptr, level);

Another useful one is to reduce the memory level used by the library. The memory
level defaults to 8, but it can be lowered if you are short on memory (running DOS, for
example, where you only have 640K). Note that the memory level does have an effect

48

on compression; among other things, lower levels will result in sections of incompress-
ible data being emitted in smaller stored blocks, with a correspondingly larger relative
overhead of up to 15% in the worst case.

png_set_compression_mem_level(png_ptr, level);

The other functions are for configuring zlib. They are not recommended for normal
use and may result in writing an invalid PNG file. See zlib.h for more information on
what these mean.

png_set_compression_strategy(png_ptr,
strategy);

png_set_compression_window_bits(png_ptr,
window_bits);

png_set_compression_method(png_ptr, method);
png_set_compression_buffer_size(png_ptr, size);

5.9 Controlling row filtering
If you want to control whether libpng uses filtering or not, which filters are used, and
how it goes about picking row filters, you can call one of these functions. The selection
and configuration of row filters can have a significant impact on the size and encoding
speed and a somewhat lesser impact on the decoding speed of an image. Filtering is
enabled by default for RGB and grayscale images (with and without alpha), but not for
paletted images nor for any images with bit depths less than 8 bits/pixel.

The ’method’ parameter sets the main filtering method, which is currently only ’0’
in the PNG 1.2 specification. The ’filters’ parameter sets which filter(s), if any, should
be used for each scanline. Possible values are PNG_ALL_FILTERS and PNG_NO_FILTERS
to turn filtering on and off, respectively.

Individual filter types are PNG_FILTER_NONE, PNG_FILTER_SUB, PNG_FILTER_UP
, PNG_FILTER_AVG, PNG_FILTER_PAETH, which can be bitwise ORed together
with ’—’ to specify one or more filters to use. These filters are described in more detail
in the PNG specification. If you intend to change the filter type during the course of
writing the image, you should start with flags set for all of the filters you intend to use
so that libpng can initialize its internal structures appropriately for all of the filter types.
(Note that this means the first row must always be adaptively filtered, because libpng
currently does not allocate the filter buffers until png_write_row() is called for
the first time.)

filters = PNG_FILTER_NONE | PNG_FILTER_SUB
PNG_FILTER_UP | PNG_FILTER_AVG |
PNG_FILTER_PAETH | PNG_ALL_FILTERS;

png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE,
filters);

The second parameter can also be
PNG_INTRAPIXEL_DIFFERENCING if you are
writing a PNG to be embedded in a MNG
datastream. This parameter must be the
same as the value of filter_method used
in png_set_IHDR().

It is also possible to influence how libpng chooses from among the available filters.
This is done in one or both of two ways - by telling it how important it is to keep the

49

same filter for successive rows, and by telling it the relative computational costs of the
filters.

double weights[3] = {1.5, 1.3, 1.1},
costs[PNG_FILTER_VALUE_LAST] =
{1.0, 1.3, 1.3, 1.5, 1.7};

png_set_filter_heuristics(png_ptr,
PNG_FILTER_HEURISTIC_WEIGHTED, 3,
weights, costs);

The weights are multiplying factors that indicate to libpng that the row filter should
be the same for successive rows unless another row filter is that many times better
than the previous filter. In the above example, if the previous 3 filters were SUB, SUB,
NONE, the SUB filter could have a ”sum of absolute differences” 1.5 x 1.3 times higher
than other filters and still be chosen, while the NONE filter could have a sum 1.1 times
higher than other filters and still be chosen. Unspecified weights are taken to be 1.0,
and the specified weights should probably be declining like those above in order to
emphasize recent filters over older filters.

The filter costs specify for each filter type a relative decoding cost to be considered
when selecting row filters. This means that filters with higher costs are less likely to be
chosen over filters with lower costs, unless their ”sum of absolute differences” is that
much smaller. The costs do not necessarily reflect the exact computational speeds of
the various filters, since this would unduly influence the final image size.

Note that the numbers above were invented purely for this example and are given
only to help explain the function usage. Little testing has been done to find optimum
values for either the costs or the weights.

5.10 Removing unwanted object code
There are a bunch of #define’s in pngconf.h that control what parts of libpng are
compiled. All the defines end in _SUPPORTED. If you are never going to use a
capability, you can change the #define to #undef before recompiling libpng and
save yourself code and data space, or you can turn off individual capabilities with
defines that begin with PNG_NO_.

You can also turn all of the transforms and ancillary chunk capabilities off en masse
with compiler directives that define PNG_NO_READ[or WRITE]_TRANSFORMS,
or PNG_NO_READ[or WRITE]_ANCILLARY_CHUNKS, or all four, along with di-
rectives to turn on any of the capabilities that you do want. The PNG_NO_READ
[or WRITE]_TRANSFORMS directives disable the extra transformations but still
leave the library fully capable of reading and writing PNG files with all known pub-
lic chunks. Use of the PNG_NO_READ[or WRITE]_ANCILLARY_CHUNKS di-
rective produces a library that is incapable of reading or writing ancillary chunks.
If you are not using the progressive reading capability, you can turn that off with
PNG_NO_PROGRESSIVE_READ (don’t confuse this with the INTERLACING capa-
bility, which you’ll still have).

All the reading and writing specific code are in separate files, so the linker should
only grab the files it needs. However, if you want to make sure, or if you are building
a stand alone library, all the reading files start with pngr and all the writing files start
with pngw. The files that don’t match either (like png.c, pngtrans.c, etc.) are used for

50

both reading and writing, and always need to be included. The progressive reader is in
pngpread.c

If you are creating or distributing a dynamically linked library (a .so or DLL file),
you should not remove or disable any parts of the library, as this will cause applications
linked with different versions of the library to fail if they call functions not available
in your library. The size of the library itself should not be an issue, because only those
sections that are actually used will be loaded into memory.

5.11 Requesting debug printout
The macro definition PNG_DEBUG can be used to request debugging printout. Set it
to an integer value in the range 0 to 3. Higher numbers result in increasing amounts of
debugging information. The information is printed to the ”stderr” file, unless another
file name is specified in the PNG_DEBUG_FILE macro definition.

When PNG_DEBUG > 0, the following functions (macros) become available:

png_debug(level, message)
png_debug1(level, message, p1)
png_debug2(level, message, p1, p2)

in which ”level” is compared to PNG_DEBUG to decide whether to print the mes-
sage, ”message” is the formatted string to be printed, and p1 and p2 are parameters that
are to be embedded in the string according to printf-style formatting directives. For
example,

png_debug1(2, "foo=%d\n", foo);

is expanded to

if(PNG_DEBUG > 2)
fprintf(PNG_DEBUG_FILE, "foo=%d\n", foo);

When PNG_DEBUG is defined but is zero, the macros aren’t defined, but you can
still use PNG_DEBUG to control your own debugging:

#ifdef PNG_DEBUG
fprintf(stderr, ...

#endif

When PNG_DEBUG = 1, the macros are defined, but only png_debug state-
ments having level = 0 will be printed. There aren’t any such statements in this
version of libpng, but if you insert some they will be printed.

51

Chapter 6

VI. MNG support

The MNG specification (available at http://www.libpng.org/pub/mng) allows certain
extensions to PNG for PNG images that are embedded in MNG datastreams. Libpng
can support some of these extensions. To enable them, use the png_permit_mng_features
() function:

feature_set = png_permit_mng_features(png_ptr, mask)
mask is a png_uint_32 containing the bitwise OR of the

features you want to enable. These include
PNG_FLAG_MNG_EMPTY_PLTE
PNG_FLAG_MNG_FILTER_64
PNG_ALL_MNG_FEATURES

feature_set is a png_uint_32 that is the bitwise AND of
your mask with the set of MNG features that is
supported by the version of libpng that you are using.

It is an error to use this function when reading or writing a standalone PNG file
with the PNG 8-byte signature. The PNG datastream must be wrapped in a MNG
datastream. As a minimum, it must have the MNG 8-byte signature and the MHDR
and MEND chunks. Libpng does not provide support for these or any other MNG
chunks; your application must provide its own support for them. You may wish to
consider using libmng (available at http://www.libmng.com) instead.

52

Chapter 7

VII. Changes to Libpng from
version 0.88

It should be noted that versions of libpng later than 0.96 are not distributed by the
original libpng author, Guy Schalnat, nor by Andreas Dilger, who had taken over from
Guy during 1996 and 1997, and distributed versions 0.89 through 0.96, but rather by
another member of the original PNG Group, Glenn Randers-Pehrson. Guy and Andreas
are still alive and well, but they have moved on to other things.

The old libpng functions png_read_init(), png_write_init() png_info_init
(), png_read_destroy(), and png_write_destroy() have been moved to
PNG_INTERNAL in version 0.95 to discourage their use. These functions will be re-
moved from libpng version 2.0.0.

The preferred method of creating and initializing the libpng structures is via the
png_create_read_struct(), png_create_write_struct(), and png_create_info_struct
() because they isolate the size of the structures from the application, allow version
error checking, and also allow the use of custom error handling routines during the
initialization, which the old functions do not. The functions png_read_destroy
() and png_write_destroy() do not actually free the memory that libpng allo-
cated for these structs, but just reset the data structures, so they can be used instead
of png_destroy_read_struct() and png_destroy_write_struct() if
you feel there is too much system overhead allocating and freeing the png_struct
for each image read.

Setting the error callbacks via png_set_message_fn() before png_read_init
() as was suggested in libpng-0.88 is no longer supported because this caused applica-
tions that do not use custom error functions to fail if the png_ptr was not initialized
to zero. It is still possible to set the error callbacks AFTER png_read_init(), or
to change them with png_set_error_fn(), which is essentially the same func-
tion, but with a new name to force compilation errors with applications that try to use
the old method.

Starting with version 1.0.7, you can find out which version of the library you are
using at run-time:

png_uint_32 libpng_vn = png_access_version_number();

The number libpng_vn is constructed from the major version, minor version
with leading zero, and release number with leading zero, (e.g., libpng_vn for version

53

1.0.7 is 10007).
You can also check which version of png.h you used when compiling your appli-

cation:

png_uint_32 application_vn = PNG_LIBPNG_VER;

54

Chapter 8

VIII. Changes to Libpng from
version 1.0.x to 1.2.x

Support for user memory management was enabled by default. To accomplish this, the
functions png_create_read_struct_2(), png_create_write_struct_2
(), png_set_mem_fn(), png_get_mem_ptr(), png_malloc_default()
, and png_free_default() were added.

Support for the iTXt chunk has been enabled by default as of version 1.2.41.
Support for certain MNG features was enabled.
Support for numbered error messages was added. However, we never got around to

actually numbering the error messages. The function png_set_strip_error_numbers
() was added (Note: the prototype for this function was inadvertently removed from
png.h in PNG_NO_ASSEMBLER_CODE builds of libpng-1.2.15. It was restored in
libpng-1.2.36).

The png_malloc_warn() function was added at libpng-1.2.3. This issues a
png_warning and returns NULL instead of aborting when it fails to acquire the
requested memory allocation.

Support for setting user limits on image width and height was enabled by de-
fault. The functions png_set_user_limits(), png_get_user_width_max
(), and png_get_user_height_max() were added at libpng-1.2.6.

The png_set_add_alpha() function was added at libpng-1.2.7.
The function png_set_expand_gray_1_2_4_to_8() was added at libpng-

1.2.9. Unlike png_set_gray_1_2_4_to_8(), the new function does not expand
the tRNS chunk to alpha. The png_set_gray_1_2_4_to_8() function is depre-
cated.

A number of macro definitions in support of runtime selection of assembler code
features (especially Intel MMX code support) were added at libpng-1.2.0:

PNG_ASM_FLAG_MMX_SUPPORT_COMPILED
PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU
PNG_ASM_FLAG_MMX_READ_COMBINE_ROW
PNG_ASM_FLAG_MMX_READ_INTERLACE
PNG_ASM_FLAG_MMX_READ_FILTER_SUB
PNG_ASM_FLAG_MMX_READ_FILTER_UP
PNG_ASM_FLAG_MMX_READ_FILTER_AVG
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH
PNG_ASM_FLAGS_INITIALIZED
PNG_MMX_READ_FLAGS

55

PNG_MMX_FLAGS
PNG_MMX_WRITE_FLAGS
PNG_MMX_FLAGS

We added the following functions in support of runtime selection of assembler code
features:

png_get_mmx_flagmask()
png_set_mmx_thresholds()
png_get_asm_flags()
png_get_mmx_bitdepth_threshold()
png_get_mmx_rowbytes_threshold()
png_set_asm_flags()

We replaced all of these functions with simple stubs in libpng-1.2.20, when the
Intel assembler code was removed due to a licensing issue.

These macros are deprecated:

PNG_READ_TRANSFORMS_NOT_SUPPORTED
PNG_PROGRESSIVE_READ_NOT_SUPPORTED
PNG_NO_SEQUENTIAL_READ_SUPPORTED
PNG_WRITE_TRANSFORMS_NOT_SUPPORTED
PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED
PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORTED

They have been replaced, respectively, by:

PNG_NO_READ_TRANSFORMS
PNG_NO_PROGRESSIVE_READ
PNG_NO_SEQUENTIAL_READ
PNG_NO_WRITE_TRANSFORMS
PNG_NO_READ_ANCILLARY_CHUNKS
PNG_NO_WRITE_ANCILLARY_CHUNKS

PNG_MAX_UINTwas replaced with PNG_UINT_31_MAX. It has been deprecated
since libpng-1.0.16 and libpng-1.2.6.

The function png_check_sig(sig, num)was replaced with !png_sig_cmp
(sig, 0, num) It has been deprecated since libpng-0.90.

The function png_set_gray_1_2_4_to_8() which also expands tRNS to
alpha was replaced with png_set_expand_gray_1_2_4_to_8() which does
not. It has been deprecated since libpng-1.0.18 and 1.2.9.

56

Chapter 9

IX. Changes to Libpng from
version 1.0.x/1.2.x to 1.4.x

Private libpng prototypes and macro definitions were moved from png.h and pngconf.h
into a new pngpriv.h header file.

Functions png_set_benign_errors(), png_benign_error(), and png_chunk_benign_error
() were added.

Support for setting the maximum amount of memory that the application will allo-
cate for reading chunks was added, as a security measure. The functions png_set_chunk_cache_max
() and png_get_chunk_cache_max() were added to the library.

We implemented support for I/O states by adding png_ptr member io_state
and functions png_get_io_chunk_name() and png_get_io_state() in

pngget.c
We added PNG_TRANSFORM_GRAY_TO_RGB to the available high-level input

transforms.
Checking for and reporting of errors in the IHDR chunk is more thorough.
Support for global arrays was removed, to improve thread safety.
Some obsolete/deprecated macros and functions have been removed.
Typecasted NULL definitions such as #define png_voidp_NULL (png_voidp

)NULL were eliminated. If you used these in your application, just use NULL instead.
The png_struct and info_structmembers ”trans” and ”trans_values

” were changed to ”trans_alpha” and ”trans_color”, respectively.
The obsolete, unused pnggccrd.c and pngvcrd.c files and related makefiles were

removed.
The PNG_1_0_X and PNG_1_2_X macros were eliminated.
The PNG_LEGACY_SUPPORTED macro was eliminated.
Many WIN32_WCE #ifdefs were removed.
The functions png_read_init(info_ptr), png_write_init(info_ptr

), png_info_init(info_ptr), png_read_destroy(), and png_write_destroy
() have been removed. They have been deprecated since libpng-0.95.

The png_permit_empty_plte() was removed. It has been deprecated since
libpng-1.0.9. Use png_permit_mng_features() instead.

We removed the obsolete stub functions png_get_mmx_flagmask(), png_set_mmx_thresholds
(), png_get_asm_flags(), png_get_mmx_bitdepth_threshold(), png_get_mmx_rowbytes_threshold
(), png_set_asm_flags(), and png_mmx_supported().

57

We removed the obsolete png_check_sig(), png_memcpy_check(), and
png_memset_check() functions. Instead use !png_sig_cmp(), png_memcpy
(), and png_memset(), respectively.

The function png_set_gray_1_2_4_to_8() was removed. It has been dep-
recated since libpng-1.0.18 and 1.2.9, when it was replaced with png_set_expand_gray_1_2_4_to_8
() because the former function also expanded palette images.

We changed the prototype for png_malloc() from png_malloc(png_structp
png_ptr, png_uint_32 size) to png_malloc(png_structp png_ptr

, png_alloc_size_t size)
The png_calloc() function was added and is used in place of of ”png_malloc

(); png_memset();” except in the case in png_read_png() where the array
consists of pointers; in this case a ”for” loop is used after the png_malloc() to
set the pointers to NULL, to give robust. behavior in case the application runs out of
memory part-way through the process.

We changed the prototypes of png_get_compression_buffer_size() and
png_set_compression_buffer_size() to work with png_size_t instead
of png_uint_32.

Support for numbered error messages was removed by default, since we never got
around to actually numbering the error messages. The function png_set_strip_error_numbers
() was removed from the library by default.

The png_zalloc() and png_zfree() functions are no longer exported. The
png_zalloc() function no longer zeroes out the memory that it allocates.

We removed the trailing ’.’ from the warning and error messages.

58

Chapter 10

X. Detecting libpng

The png_get_io_ptr() function has been present since libpng-0.88, has never
changed, and is unaffected by conditional compilation macros. It is the best choice for
use in configure scripts for detecting the presence of any libpng version since 0.88. In
an autoconf ”configure.in” you could use

AC_CHECK_LIB(png, png_get_io_ptr, ...

59

Chapter 11

XI. Source code repository

Since about February 2009, version 1.2.34, libpng has been under ”git” source control.
The git repository was built from old libpng-x.y.z.tar.gz files going back to version
0.70. You can access the git repository (read only) at

git://libpng.git.sourceforge.net/gitroot/libpng
or you can browse it via ”gitweb” at
http://libpng.git.sourceforge.net/git/gitweb.cgi?p=libpng
Patches can be sent to glennrp at users.sourceforge.net or to png-mng-implement

at lists.sourceforge.net or you can upload them to the libpng bug tracker at
http://libpng.sourceforge.net

60

Chapter 12

XII. Coding style

Our coding style is similar to the ”Allman” style, with curly braces on separate lines:

if (condition)
{

action;
}

else if (another condition)
{

another action;
}

The braces can be omitted from simple one-line actions:

if (condition)
return (0);

We use 3-space indentation, except for continued statements which are usually in-
dented the same as the first line of the statement plus four more spaces.

For macro definitions we use 2-space indentation, always leaving the ”#” in the
first column.

#ifndef PNG_NO_FEATURE
ifndef PNG_FEATURE_SUPPORTED
define PNG_FEATURE_SUPPORTED
endif
#endif

Comments appear with the leading ”/*” at the same indentation as the statement
that follows the comment:

/* Single-line comment */
statement;

/* Multiple-line

* comment

*/
statement;

Very short comments can be placed at the end of the statement to which they per-
tain:

statement; /* comment */

61

We don’t use C++ style (”//”) comments. We have, however, used them in the past
in some now-abandoned MMX assembler code.

Functions and their curly braces are not indented, and exported functions are marked
with PNGAPI:

/* This is a public function that is visible to

* application programers. It does thus-and-so.

*/
void PNGAPI
png_exported_function(png_ptr, png_info, foo)
{

body;
}

The prototypes for all exported functions appear in png.h, above the comment that
says

/* Maintainer: Put new public prototypes here ... */

We mark all non-exported functions with ”/* PRIVATE */””:

void /* PRIVATE */
png_non_exported_function(png_ptr, png_info, foo)
{

body;
}

The prototypes for non-exported functions (except for those in pngtest) appear in
pngpriv.h above the comment that says

/* Maintainer: Put new private prototypes here ˆ and in libpngpf.3 */

The names of all exported functions and variables begin with ”png_”, and all pub-
licly visible C preprocessor macros begin with ”PNG_”.

We put a space after each comma and after each semicolon in ”for” statments, and
we put spaces before and after each C binary operator and after ”for” or ”while”. We
don’t put a space between a typecast and the expression being cast, nor do we put one
between a function name and the left parenthesis that follows it:

for (i = 2; i > 0; --i)
y[i] = a(x) + (int)b;

We prefer #ifdef and #ifndef to #if defined() and if !defined()
when there is only one macro being tested.

We do not use the TAB character for indentation in the C sources.
Lines do not exceed 80 characters.
Other rules can be inferred by inspecting the libpng source.

62

Chapter 13

XIII. Y2K Compliance in libpng

January 3, 2010
Since the PNG Development group is an ad-hoc body, we can’t make an official

declaration.
This is your unofficial assurance that libpng from version 0.71 and upward through

1.4.0 are Y2K compliant. It is my belief that earlier versions were also Y2K compliant.
Libpng only has three year fields. One is a 2-byte unsigned integer that will hold

years up to 65535. The other two hold the date in text format, and will hold years up
to 9999.

The integer is ”png_uint_16 year” in png_time_struct.
The strings are ”png_charp time_buffer” in png_struct and ”near_time_buffer

”, which is a local character string in png.c.
There are seven time-related functions:

png_convert_to_rfc_1123() in png.c
(formerly png_convert_to_rfc_1152() in error)

png_convert_from_struct_tm() in pngwrite.c, called
in pngwrite.c

png_convert_from_time_t() in pngwrite.c
png_get_tIME() in pngget.c
png_handle_tIME() in pngrutil.c, called in pngread.c
png_set_tIME() in pngset.c
png_write_tIME() in pngwutil.c, called in pngwrite.c

All appear to handle dates properly in a Y2K environment. The png_convert_from_time_t
() function calls gmtime() to convert from system clock time, which returns (year
- 1900), which we properly convert to the full 4-digit year. There is a possibility that ap-
plications using libpng are not passing 4-digit years into the png_convert_to_rfc_1123
() function, or that they are incorrectly passing only a 2-digit year instead of ”year -
1900” into the png_convert_from_struct_tm() function, but this is not un-
der our control. The libpng documentation has always stated that it works with 4-digit
years, and the APIs have been documented as such.

The tIME chunk itself is also Y2K compliant. It uses a 2-byte unsigned integer to
hold the year, and can hold years as large as 65535.

zlib, upon which libpng depends, is also Y2K compliant. It contains no date-related
code.

63

